
Adam Cubitt Virtual Evolutionary Worlds

Abstract
This report is concerned with the creation of virtual evolutionary worlds.
It discusses world design with particular attention to the problem of
achieving open-endedness. This is followed by a description of a virtual
machine aimed at achieving this goal and a summary of several
experiments performed using this system.

Contents
Preamble...2
Introduction.. 2

Layout...2
Evolution.. 2

Evolutionary theory..2
Evolution and computers... 3
Considerations and criticisms of evolutionary systems.......................4

Building worlds..4
The first objective.. 4
The second objective..4
Constricted worlds... 5
Open-ended worlds.. 5
The spectrum..6

The virtual machine... 6
A few thoughts on interpretation and computers.................................6
Data as programs..6
Interpreting data as instructions... 6
Operands.. 7
Self modifying programs..8
Instruction set... 9
Limitations and additional notes..9

Experiments..10
Experiment 1.. 11
Experiment 2.. 13
Experiment 3.. 16

Conclusion..19
The last experiment..19
Closing remarks and acknowledgements... 20

References.. 20

1

Adam Cubitt Virtual Evolutionary Worlds

Preamble
The project described in this report did not arise out of any desire to solve
a particular problem, nor the desire to create a product. In a first instance
came the acceptance of the computer as a medium. Investigation of this
concept led to many avenues, one of which – the acknowledgement of
programs as data – inspired the succession of ideas that form the basis for
the project. This report attempts to amalgamate these ideas into a single
logical whole. It is worth noting that it is merely one interpretation of
what was undertaken.

Introduction
The concept of a virtual evolutionary world touches on many disciplines,
as does its implementation. Formulating a report that encompasses all the
relevant subject areas is extremely difficult. As such this report focuses on
the topics most relevant to the project undertaken and for this reason the
treatment of certain topics will no doubt seem cursory to anyone familiar
with the subject matter.

Layout
The layout of this report bares no resemblance to the chronology of the
project. During the project the experiments and research happened
concurrently, the one informing the other. As such there was no obvious
order in which to present the two. It suffices to say that, though the
experiments are presented last, they greatly informed many of the topics
discussed in previous sections.
The topics dealt with can, broadly speaking, be divided into those that
relate to evolutionary systems and those that relate to their
implementation. This report begins with a discussion of evolution and
world design followed by a description of the virtual machine
implemented and a summary of the experiments carried out.

Evolution
evolution /,i:və’lu:∫(ə)n/ n. 1 gradual development. 2
development of species from earlier forms, as an explanation of
their origins. 3 unfolding of events etc. (evolution of a plot). 4
change in the disposition of troops or ships. □ evolutionary adj.
[Latin: related to EVOLVE]

evolutionist n. person who regards evolution as explaining the
origin of species.

evolve /I’vþlv/ v. (-ving) 1 develop gradually and naturally. 2
devise (a theory, plan, etc.). 3 unfold. 4 give off (gas, heat, etc.).
[Latin Volvo volut- roll]

The Pocket Oxford Dictionary (1996)

Evolutionary theory
Evolution is often, mistakenly, equated to Darwin’s theory of natural
selection. Darwin’s theory is indeed widely accepted as a useful
description of the process; however there is an obvious distinction
between evolution – a process – and theories of evolution – imperfect but
useful descriptions of how this process occurs. Natural selection is one of
the forces that is useful in describing how evolution occurs, however, as
this extract from Wikipedia[1] illustrates, it is one among several:

The prevailing formulation of the theory of evolution is the
modern synthesis, which brings together Darwin's theory of
evolution by natural selection and Gregor Mendel’s theory of
inherited characteristics, now called genes. In the modern
synthesis, ‘evolution’ means a change in the frequency of an
allele within a gene pool. This change may be caused by a
number of different mechanisms: natural selection, genetic drift
or changes in population structure (gene flow).

2

Adam Cubitt Virtual Evolutionary Worlds

Evolution and computers
There is a well established precedent for the application of evolutionary
concepts to computers. Existing examples form a useful reference point
when trying to understand how it is possible to abstract evolution in terms
of a computer system.

Genetic programming (a summary)
Genetic programming, as the name suggests, is a programming technique.
As is true of all programming techniques the objective is to produce an
algorithm that solves a specific problem. Genetic programming starts with
a high level description of the problem and uses a genetic system to search
the vast array of possibilities for good solutions. This search is performed
as a series of ‘experiments’ (runs) and refined through the application of
genetic operators.

Performing a run

Preparatory steps
Before performing a run the problem to be solved must be described to the
genetic system. This requires the following to be defined:

Terminal Set The set of (initial) values that can be input into
functions.

Function Set The set of operations that can be used in the
algorithm being developed.

Fitness measure A means of measuring a program’s success at
solving the problem.

End condition A condition used to determine when the end of a
run has been reached.

Parameters Other parameters necessary for configuring runs.

The process
A run is performed as follows:

1. A set (population) of random programs (individuals) is generated.
2. The success of each individual at solving the specified problem is

evaluated using the fitness measure.
3. The end condition is evaluated to see if the run has finished. If so

the most successful program is designated as the result and the run
terminates.

4. Otherwise a new population is generated by selecting individuals
from the last generation - with a bias for those that were most
successful - and performing mutation operations to create new
individuals.

5. The process is repeated from step 2 with the new population.

Artificial life (a summary)
Artificial life, unlike genetic programming, is not concerned with the
application of evolutionary theory to computers, but the evolutionary
process itself. In its simplest form, artificial life involves the definition of
a virtual world within which there is the potential for complex systems to
develop. This world can then be flooded with random data to form a
virtual primordial soup from which systems can evolve, or loaded with
existing systems to observe if and how they evolve. As Bedau [2002, p.3]
summarises in his article The scientific and philosophical scope of
artificial life, such experiments are interesting for many reasons:

The challenges fall into three broad categories: the origin of life,
life’s evolutionary potential, and life’s connection to mind and
culture.

3

Adam Cubitt Virtual Evolutionary Worlds

The essay goes on to elucidate ways in which artificial life can lead to a
better understanding of these topics. It also presents a cursory discussion
of the implications of artificial life for the arts. However, unsupported
claims such as “artificial life is radically changing human culture and
technology” suggests that this particular discussion may have more to do
with science fiction than fact.
Perhaps the most reputed examples of artificial life systems are Tom
Ray’s Tierra[2a] and a derivative system, Avida[3], developed at the MSU
Digital Evolution Laboratory.

Considerations and criticisms of evolutionary systems
The fact that an evolutionary system demonstrably works lends credence
to the evolutionary theory from which it was abstracted. However, any
such system will be subject to all the limitations and imperfections of that
theory.
Genetic programming is a useful tool, however, its validity in terms of
investigating the evolutionary process is limited in that it can only serve to
test evolutionary theory (and even in this respect it is limited).
Artificial life is involved with the process of evolution and as such is a
potentially viable means of investigating it. However, critics of
evolutionary systems in general often argue that in a first instance these
systems assume too much1. This is a valid point especially in the context
of artificial life.

Investigating the evolutionary process
For a system to be useful in investigating the evolutionary process, and
not simply testing evolutionary theories, it must make no assumptions
about how the process occurs. It cannot be designed to allow a specific
evolutionary theory to occur since this would bias the experiment. If the
system is designed to allow all existing evolutionary theories to occur it
1 Several examples can be found at newCreationism.org[5a] for example Miller’s
article The Bugs with The Bugs[5b].

still biases the experiment against any process that falls outside the scope
of these theories. Thus in designing a system to investigate evolution,
evolutionary theory must be disregarded.

Building worlds
In order to investigate evolution it is first necessary to define a virtual
world in which this investigation can take place.
Within the context of this project world design involves two objectives
that are ultimately contradictory. As will be seen, these objectives form
the poles of a spectrum which is useful as both a tool and a benchmark.

The first objective
The first objective is the creation of a world in which evolution can occur.
The creation of such a world should not focus on evolution by any
particular means. This may sound implausible, but it is not. If evolution is
the process by which systems develop, this makes only two requirements
on the world:

 It must be possible for complex systems to exist.
 It must be possible for systems to change (i.e. it must be possible

for systems that rearrange systems to exist).

The second objective
The second objective is to create a world that is visually tangible. This
stems from the fact that visualisation is an extremely useful (if not
necessary) tool in comprehending and communicating ideas about a
world. In this respect this objective is equally as important as the first
since a world that cannot be comprehended or easily discussed is unlikely
to offer any insights.

4

Adam Cubitt Virtual Evolutionary Worlds

Constricted worlds
It is obvious that the more constricting the laws imposed on a world the
more the outcome is limited, to the extreme where the experiment looses
all interest because the outcome is obvious.
For example in a world where entities can only move and eat, the only
possible outcomes are that an entity always eats, always moves, or moves
and eats. Always eating and always moving will ultimately result in
starvation so the only possible outcome is entities that move and eat. The
way in which the entities move may vary but this presents a very limited
set of possibilities.

Open-ended worlds
It is important to understand that open-endedness is not a measure of the
number but the range of possible outcomes. The latter is necessarily
linked to the first but is not the same thing. To take the previous example,
the entities may be able to move in a huge number of ways resulting in
numerous possible outcomes, however, the scope of the possible outcomes
is extremely limited: entities can only move, eat or move and eat.
This example also illustrates that the range of possible outcomes is
dependant on the set of possible interactions (the range of outcomes is
limited because the only possible interactions are moving and eating). In
other words: the larger the set of possible interactions the more open-
ended the world.
Now consider two worlds: one in which interaction occurs at the object
level and the other at the sub-object level. It is not possible for interaction
to occur at a sub-object level if interaction is defined at the object level,
however the opposite is true: it is possible for interaction to occur at an
object level if the interaction is defined at a sub-object level. Thus the set
of interactions possible at an object level are a sub-set of the interactions
possible at a sub-object level. To take a more concrete example: consider
an entity kicking a ball. This interaction could be dealt with at the level of
the entity and the ball; however a much more generalised solution would

be to deal with it at the level of the colliding surfaces. In the first case
only one interaction is possible (entity+ball), whereas in the latter case
many different interactions are possible (a surface of the entity+a surface
of the ball).
This suggests that a world in which interaction occurs at a sub-object level
will be more open-ended than a world in which interaction only occurs at
an object level. Thus the more fundamental the level of interaction the
more open-ended the world.

Achieving open-ended worlds
In the physical world life forms exist within the same physical space and
as such their interaction is only defined at the fundamental level of
physical interaction. In the virtual domain the most fundamental property
is not energy or matter, but memory. It follows that in a similarly open-
ended virtual world interaction must occur at the fundamental level of
memory manipulation.
Such a world is possible, it equates to a single memory space containing
several programs. The entire memory space is run as a single process with
multiple threads of execution. A good example of this approach is
Corewar[4].

The problem with open-ended worlds
The problem with constructing a world as a single memory space is that it
is extremely difficult to distinguish individual entities (or more
specifically to define what constitutes an individual). It is possible to
visualise the memory space, to observe, in detail, the memory
manipulations that occur, but it is almost impossible to interpret them as
anything more than a sequence of memory operations. Essentially what we
are observing is a single dimensional world in which time and space are
replaced by processor cycles and memory. Within this world the
possibilities are almost limitless, but it is so radically different from
anything we know that we are incapable of comprehending it. To render

5

Adam Cubitt Virtual Evolutionary Worlds

such a world more comprehensible necessarily requires the introduction of
additional restrictions.

The spectrum
Essentially what this demonstrates is that the two objectives behind world
design are ultimately contradictory. At one end of the spectrum is the
‘tangible’: worlds that are immediately recognisable and comprehensible
but with such limited potential that they are devoid of interest. At the
other end is the ‘open-ended’: worlds with only the most fundamental
limitations but so abstracted that they are completely incomprehensible.

The virtual machine
The following is not a complete description of the virtual machine
implemented, but attempts to describe its distinguishing features.
The fundamental principal underlying the design described is the stripping
away of all unnecessary abstraction in order to achieve a system that is
both extremely flexible and extremely simple.

A few thoughts on interpretation and computers
Information without interpretation is meaningless.
The shapes on this page mean nothing unless they are interpreted as
words. What if they were interpreted as a picture?
Computers make reinterpreting information easy since all information is
stored in the same format (binary). Typically this data is sent to a device
which translates it into a format that is more readily understood by the
user. In theory this allows perception of a piece of information to be
radically altered simply by sending it to a different device.
The most important 'device' in a computer is the CPU which interprets
data as programs: sequences of instructions. These instructions manipulate
the internal state of the computer. Sending the wrong sequence of

instructions to the CPU can destabilise the computer resulting in
unpredictable behaviour, system failure and even permanent damage.

Data as programs
A basic concept underlying the virtual machine is that it should be capable
of interpreting any data as a valid program. For this to be possible it must
be able to interpret any chunk2 of data as a valid instruction. In addition all
programs should be completely safe. No program should be capable of
compromising the stability of the virtual machine.

Interpreting data as instructions
Any chunk of data can be interpreted as an integer value and
In most computers the CPU associates numbers with basic operations e.g.

1: 0x0001 MOV move data between memory addresses
2: 0x0002 ADD add two pieces of data
03:0
0:00

0x0003 SUB subtract two pieces of data

...

Typically there is a (relatively) small number of instructions so only a
small set of numbers represent valid operations. This means that most
chunks of data would not equate to valid instructions. Potentially this
could be resolved by fixing the size of each chunk thus limiting the range
of values, however, this is problematic since it requires that for every
chunk of data (d) to be meaningful the number of instructions (In) must be
2^(ds) where ds is the number of bits per chunk. Ultimately we do not
want to be confined to a specific number of instructions or even a specific
chunk size.

2For the purposes of this essay a chunk constitues a subdivision of a block of data.

6

Adam Cubitt Virtual Evolutionary Worlds

This problem of mapping the set of possible numbers (D) into the set of
possible instructions (I) can be solved using modulo arithmetic. This
allows any number to be mapped into a given range3:

d%In = x where x ε [0, In[and d ε D

E.g. to map all numbers into the range [0, 20] we take modulus 21 of each
number:

d Calculation x
0 0%21 0
10 10%21 10
20 20%21 20
21 21%21 0
250 250%21 19
1100 1100%21 8
...

This method allows any chunk of data to be mapped into the range of
possible instructions. In other words it is possible to interpret any chunk
of data as a valid instruction given a predefined instruction set.

Operands
Most instructions operate on data e.g.

COPY [source] [destination] (copy source to destination)

The data being manipulated is typically stored in memory. The way in
which this manipulation occurs varies depending on the instruction set and
the architecture of the CPU. Typically most CPUs have specific
instructions for accessing data in memory rather than letting all
instructions manipulate memory directly. Thus in the case of the above
example source and destination would almost certainly be registers within

3For the purposes of this essay the a%b is equivalent to a expressed in a modulo b.

the CPU, not memory addresses. However, this multi-tiered approach is
primarily the result of hardware limitations and speed requirements, and
in a virtual machine such constraints do not exist. Indeed, the use of
registers can be regarded as a special case in which the instruction set has
been implemented to manipulate memory in a specific way (and as will
become apparent, it is entirely possible to implement such an instruction
set if required). Therefore it is safe to assume that in the general case all
instructions operate on a single memory space M which contains all data.
If we define M as:

M = [0, Mn[where Mn is the number of available memory slots

it is obvious that the method used to interpret any information as an
instruction can also be used to interpret any information as a valid
memory address.
This provides a very simple method for instructions to manipulate data:
the chunks following an instruction can be interpreted as the memory
address(es) of the operand(s) e.g.
Given an instruction set:

1: COPY [source] [destination]

and a program:

1 250 32

This is interpreted as:

COPY 250%Mn 32%Mn

which copies the data at address 250%Mn to address 32%Mn of the
memory space M.
After an instruction is executed the program counter would typically be
incremented by the sum size of the instruction4 i.e. to point to the memory

4The sum size of an instruction is the amount of memory occupied by an
instruction and its operands.

7

Adam Cubitt Virtual Evolutionary Worlds

address after the last parameter of the previously executed instruction. So
in the case of:

1 250 32 25

Instruction 1 (COPY) uses 250 and 32 as parameters. The next instruction
to be executed would be 25.
This method means that given an instruction set:

I = [0, In[

and memory space

M = [0, Mn[

any data can be executed as a valid program.

Self modifying programs
As was stated previously: the distinction between types of information is
not implicit in the information, but its interpretation.
In the case of this virtual machine, the distinction between the program
and the data it operates on can be seen clearly:

 There is the data that is interpreted as a sequence of instructions
and is therefore, by definition, a program (P).

 There is a memory space (M) which contains the data on which
the instructions operate.

This suggests an obvious line of questioning:
Can P = M, and if so what are the implications?
In other words, can the program and the data on which it operates be one
and the same thing, and if so what does this imply?

Can P = M
The answer to the first question is simply yes - in theory there is no reason
why a program cannot operate on the memory space it occupies (it is, after
all, just data). In a practical sense, this would not be possible on a typical

CPU, but in the case of the virtual machine described it can be done easily
and without risk to the system’s integrity.

Implications
Understanding what this means is less obvious since there is more than
one possible interpretation. In a first instance it is worth noting that,
combined with the program counter, the data in the memory space entirely
defines the state of the virtual machine at all times.

A simple description
A simple description of the data is as a program that has the capacity to
modify itself during execution. The degree to which this occurs is
dependant on the program. It is possible that a program does not modify
itself at all, in which case the program runs as if in a separate memory
space to the data (a situation comparable to P != M).

A more complete description
However, the previous description fails to communicate the fact that the
data not only defines a program, but to a certain degree, defines the
architecture of the virtual machine (bearing in mind the instruction set is
external to this data). For example, consider a virtual machine that uses a
standard instruction set: it is entirely possible for the data to define a
program that executes as though on a traditional CPU, since it can define
specific memory addresses as registers and maintain a strict separation
between the data that constitutes the program and the data on which it
operates.
It is tempting to state that, as long as the instruction set is complete5 then
it is possible to define any architecture within the data. However, such a
statement requires substantial verification, and as such simply remains an
interesting proposition.

5Complete in the sense of Turing Complete.

8

Adam Cubitt Virtual Evolutionary Worlds

Whether or not the above statement is true, it is certainly possible to
achieve a diverse set of architectures, and perhaps most importantly, it is
entirely possible for the architecture to change during execution.

Instruction set
Although typically the instruction set is included within the description of
a virtual machine it is not necessary in this instance. The virtual machine
is constructed such that only the instruction set limits the tasks programs
are capable of performing. Therefore it makes sense to differ description
of instruction sets to within the context of specific tasks.

Limitations and additional notes

Data and programs
As has been explained, in the case of P = M the data that is executed can
only loosely be considered a program, however, for the sake of simplicity
this document will continue to use the term ‘program’ to refer to this data.

Chunk size
The virtual machine makes no requirements on the size of chunks,
however, certain considerations are worth mentioning.

Maximum instruction set size
The virtual machine parses a program by reading a chunk, interpreting it
as an integer, and then mapping it into the range of valid instructions. It is
obvious that if the size of the chunk (ds) is such that:

2(ds) < In where In is the number of instructions in the instruction
set.

Then any instructions in the range]2(ds), In] will not be used. Thus the
maximum size of the instruction set is effectively 2(ds).

Probability distribution of instructions
In addition to the above, it is worth considering the implications of:

In > 2(ds) and In != n(2(ds)) where n ε I and n > 0

Obviously, this poses no problem in that it works, however, let us consider
a specific example:
Given an instruction set I = {I0,I1,I2} and assuming ds = 3 the different
chunks get mapped to instructions as follows:

d I
000 I0

001 I1

010 I2

011 I0

100 I1

101 I2

110 I0

111 I1

I0 and I1 are effectively duplicated three times, whereas I2 is only
duplicated twice. Given a random program this means that it is more likely
that instructions I0 and I1 are executed than I2.
This imbalance becomes less significant as 2(ds) increases relative to In, so
with a significantly larger value of 2(ds) the imbalance is negligible.

Program counter

Sequential programs are not imposed
When a program is started the program counter is initialised to memory
address 0. Previously it was stated that when an instruction is executed the
program counter would typically be incremented by the sum size of the

9

Adam Cubitt Virtual Evolutionary Worlds

instruction. This is not imposed nor required. The behaviour of the
program counter is entirely determined by the instruction executed. This is
important as it allows an instruction to jump execution to any other point
in the program (and is the basis for control structures).

Circular memory spaces and offset programs
Using modulo arithmetic to ensure that memory addresses are always
within range is equivalent to having a circular memory space. A subtle
implication of this is that if the program counter reaches the end of the
program and wraps around to the beginning it may be offset relative to
memory address 0. This means that it is entirely possible for a different
sequence of instructions to be executed on subsequent passes through the
memory space.

Experiments
The following section describes several experiments undertaken during
the course of the project. These experiments were based on and informed
the design of the previously described virtual machine.

Experiment 1

Description

World
The world is defined as a 2D grid. Each square of the grid can be occupied
by an entity (red), an obstacle (grey), or food (cyan).
Entities are controlled by separate programs and have an energy pool.
Each instruction executed costs the entity one unit of energy. If an entity’s
energy pool is empty it is considered dead and is removed from the world.
Within the world entities can move horizontally or vertically between
adjacent squares. Movement into a square that is currently occupied by

another entity or an obstacle is not permitted. If an entity moves into a
square containing food, the food is added to the entities energy pool and
removed from the world.

screenshot of experiment 1 during a 'run'

10

Adam Cubitt Virtual Evolutionary Worlds

Instruction set
All operands are read as 4 byte integers and all instructions increment the
program counter by their sum size.

Instruction Description

BNE [&test] [&addr] If test is not even execution jumps to addr

MOV [&from] [&to] to = from

ADD [&a] [&b] [&res] res = a + b

SUB [&a] [&b] [&res] res = a - b

DAT [&type] [&dir] [&res] If type is even tests to see if the tile next to
the entity in direction dir is empty and sets
res to the result (0/1).

If type is odd tests to see if the tile next to
the entity in direction dir contains food and
sets res to the result (0/1).

The direction is determined by dir%4 where
0 = north, 1 = east, 2 = south, 3 = west.

EXE [&dir] Attempts to moves the entity in the direction
determined by dir.

The direction is determined by dir%4 where
0 = north, 1 = east, 2 = south, 3 = west.

Summary of operation
1. A world is created containing obstacles and a randomly generated

population of entities.
2. The entity’s programs are executed in parallel (allocating an equal

amount or CPU time to each program). During this process food

appears in random empty squares within the world. The amount of
food appearing is proportional to the number of empty squares.
Each piece of food exists for a fixed duration of time before being
removed. This process continues until all entities have died.

3. A record is kept of the ten entities that survived for longest.
4. A new population of entities is created by selecting random

entities from the top ten and performing a varying amount of
random mutation on their programs.

5. The world is repopulated with the new entities and the process is
repeated from step 2.

During operation the record that is kept of the top ten programs is
maintained between populations. Thus it is not a record of the programs
that lasted longest during the last run, but the programs that have lasted
longest in all previous runs.

Results
The longest lifetime of any given entity improves periodically (the length
of time between successive improvements appears to increase).
When left for a substantial amount of time the entities behaviour alters
subtly and they begin to move more rapidly between a larger number of
squares.

Observations and criticism
This experiment is flawed in a number of ways:

 The instruction set described is too limited and it is doubtful that
it is in any way complete.

 The process is extremely close to that of genetic programming,
and this comparison highlights several issues.

o A first example is that the only genetic operator used to
produce new entities is a ‘varying amount’ of random
mutation. If this amount is 0 then an entity is effectively

11

Adam Cubitt Virtual Evolutionary Worlds

copied into the new population and if this amount is large
it is equivalent to generating a new random program. Thus
the operations in use are effectively: direct copy, random
mutation and the generation of new programs. It is hard to
determine any form of weighting for these operators,
however, what is most noticeable is the complete
omission of the cross-over operator which is by far the
most important operator in genetic programming.

o Another example is that although maintaining a record of
the top ten programs is interesting, generating new
populations from this list is questionable. It is almost
certain that this method will have a strong tendency
towards local maxima.

 The fact that the food is generated at random locations severely
limits the experiment since the only possible strategy in such a
situation is for an entity to cover as much area as possible.

The results of this experiment are predictable and coincide with a
fairly obvious best strategy.
Ultimately the system used to find better performing programs is
flawed and is little better than a random search algorithm.
One respect in which the experiment does succeed is that the visual
description of the world, though simple, is reasonably effective in
communicating the results.

12

Adam Cubitt Virtual Evolutionary Worlds

Experiment 2

screenshot of experiment 2: a program with multiple threads of execution

In actual fact, this was not a single experiment, but a set of experiments
primarily aimed at better understanding the virtual machine. Typically one
experiment inspired several other related experiments.
In a first instance these experiments comprised a simple visualisation of a
program being executed6. A later addition was to provide a primitive
means of interacting with the memory space of the program. The incentive
was to provide a primitive means of ‘debugging’ programs; however the
end result was intriguing in its own right.

Description
The program being executed is displayed as a grid. Each square of this
grid corresponds to a memory location: the bottom left square is the first
memory location and successive slots continue to the right of this. At the
edge of the screen the subsequent address is mapped to the left-most
square of the row above.
Threads are indicated by colouring the square that corresponds to their
current point of execution a different colour.
Specific experiments allow the user to set the data in a given memory slot
by specifying a value and selecting the corresponding square with the
mouse. This copies the value into the memory location.

Instruction set
One of the aims of these experiments was to observe the effects of using
different instruction sets, therefore no single instruction set was used.
What follows is a list of many of the instructions that were used during the
various experiments.

6 Not to be confused with experiments 1 and 3 which are visualisations of a world
containing several entities as opposed to a memory space.

13

Adam Cubitt Virtual Evolutionary Worlds

Instruction Description
null Does nothing

copy [&from] [&to] to = from

inc [&val] val = val + 1

dec [&val] val = val - 1

and [&a] [&b] [&res] res = a & b

or [&a] [&b] [&res] res = a | b

add [&a] [&b] [&res] res = a + b

sub [&a] [&b] [&res] res = a - b

multiply [&a] [&b] [&res] res = a * b

divide [&a] [&b] [&res] res = a / b

jump [&dest] Jumps execution to dest

jumpIfEqual [&a] [&b] [&dest] Jumps execution to dest if a = b

jumpIfNotEqual [&a] [&b] [&dest] Jumps execution to dest if a != b

jumpIfGreaterThan [&a] [&b] [&dest] Jumps execution to dest if a > b

jumpIfLessThan [&a] [&b] [&dest] Jumps execution to dest if a < b

conditionalJump [&type] [&dest] (…) Combines all the above jumps into a single instruction where type determines the
condition and dest the where to jump execution to.

spawnThread [&addr] Spawns a new thread at addr if the current number of threads is below a predetermined
limit

killThread [&tid] Kills the thread tid%maxThreads if there is more than one thread executing

14

Adam Cubitt Virtual Evolutionary Worlds

Results
The specific results varied from experiment to experiment. The
cumulative result was to highlight many issues not previously considered.
These included both implementation problems and questions about the
larger objective.

Observations and criticism

Cyclic and steady states
A fact rendered extremely obvious by these experiments is that programs
have a tendency to collapse into steady or cyclic states. No matter what
the initial state of the memory space, programs eventually end up in a
continuous loop.
This is not that surprising, since it can be proved that if steady/cyclic
states exist within any deterministic system that evolves relative to a
parameter t, as t → ∞ the probability of the system being in a
steady/cyclic state → 1.
One possible conclusion to draw from this is that if such systems are
going to learn/adapt, there must be external stimulus. Without such
stimulus the programs will stagnate.
The collapse into a steady state is inevitable, however, the speed at which
it occurs is not constant, and experimentation suggests that it is dependant
on a number of factors. The most important factor is the number of
instructions that perform jump operations in the instruction set – if the
number is high the program becomes cyclic more quickly. Multi-threading
reduces the speed at which cyclic states occur; however the effect is not
very noticeable unless the maximum number of threads is reasonably
large.

Probability distribution of instructions
The virtual machine ensures that given a random program each instruction
in the instruction set is equally likely to be executed. Despite this the
instruction set can still be biased towards particular operations they can be
performed by more than one instruction. This first became apparent when
using an instruction set that included several conditional jump instructions
(all of which can emulate a standard jump operation). The result was that
the number of jumps was extremely high relative to any other operation.
This can be regarded as an argument for using a reduced instruction set in
which the operation performed by one instruction cannot be emulated by
any other instruction in the set. However, in some respects the ability to
bias the instruction set is not without interest: it is possible that certain
weightings may be more conducive to producing complex systems than
others.
Such bias can easily be achieved within the existing virtual machine (with
very little penalty to performance) by duplicating instructions within the
instruction set.

Offsetting
Offsetting, as discussed in the description of the virtual machine, occurs
when a thread becomes offset relative to a previously executed area of
memory such that when the same area of memory is executed
subsequently it is interpreted as an entirely different set of instructions.
Offsetting is not in itself a problem but it is worth considering the ways in
which it can occur. One possibility, as previously discussed, is when a
thread reaches the end of the memory space and jumps back to the
beginning. A similar situation can easily arise with any jump instruction.
Offsetting can also arise if an instruction within a previously executed
area of memory is replaced. If the instruction is replaced by an instruction
of a different sum size the result will be to offset the thread relative to all
subsequent instructions.

15

Adam Cubitt Virtual Evolutionary Worlds

As previously stated, offsetting is not necessarily a problem. Certainly
offsetting as a result of a jump operation does not seem objectionable;
however, in the latter case, it is more questionable since an obvious
implication is that it is impossible for a single instruction within a
sequence to be replaced by another instruction of a different sum size
without modifying all subsequent instructions. To a human a dependency
such as this would render programming near impossible which suggests
that it may be undesirable.
This ‘problem’ with offsetting occurs for one of two reasons:

 Not all instructions have the same sum size.
 Sequential execution is assumed.

Addressing the latter of these conditions is by far the better solution.
Addressing the first means imposing a new requirement (on the size of
instructions), whereas addressing the second means breaking free of an
existing requirement (that program execution should be sequential).
Breaking the second requirement effectively means making every
instruction a jump operation. Perhaps the most obvious way to achieve
this is to interpret the first operand of every instruction as the memory
address of the instruction that follows. This effectively results in a linked
list of instructions.

Experiment 3

screenshot of experiment 3: a world inhabited by several entites

16

Adam Cubitt Virtual Evolutionary Worlds

The aim of this experiment was to try and develop an evolutionary world
based on the first experiment but taking into account everything that was
learned from the second. This experiment was based on the idea that in a
virtual world matter equates to memory and energy to processor cycles7.

Description
The world is represented by a 2D grid of square tiles. The colour of each
tile is determined by its height (dark green is low, light green is high).
Each tile of the grid also possesses an energy pool.
Any tile can be inhabited by an entity. An entity necessarily has memory
and optionally energy. Whilst an entity has energy it will execute its
memory space as a program. Each instruction executed incurs a minimum
energy cost which is added to the energy pool of the tile the entity
inhabits. In addition certain operations may incur an additional energy
cost. Each entity may have multiple threads of execution. All threads
within the world are executed in parallel (and given an equal share of the
virtual machine's processor time).
Entities with energy are displayed as purple squares, whilst entities
without energy are red.
Entities can perform a number of memory and energy related operations
that range from simple memory manipulation to converting memory to
energy. All operations are based on the following fundamental principals:

 Energy is conserved.
 Memory is energy
 Moving memory up requires energy, moving memory down

releases energy.
Since “memory is energy” conversion between the two is permitted.
Typically one unit of memory is equivalent to several units of energy.
An entity moving between two tiles of the same height incurs no energy
cost. Moving an entity to a tile that is higher requires an amount of energy

7 This is not a new idea. Notably Tom Ray’s Tierra[2b] is also based on the same
equivalence.

proportional to the amount of memory and the height. This energy is
added to the memory pool of the destination tile. Moving an entity to a tile
that is lower generates the same amount of energy as is required to lift an
equivalent piece of memory the same height. The energy generated is
added to the entities energy pool.

17

Adam Cubitt Virtual Evolutionary Worlds

Instruction set
The following is a summary of the instruction set used.

Memory manipulation
null, increment, and, or, copy,

decrement, add, sub
standard memory manipulation instructions (see previously for description)

Control
switch if the value at the specified memory address is true continues to the next instruction, otherwise jumps to a different

memory address

Threading
spawnThread, killThread (see previously for description)

Movement
moveFoward moves the entity forward one tile

rotate rotates the entity 90° left/right

Energy transfer
transferEnergy transfers the specified amount of energy between the entity and the entity in front of it – the direction of transfer is

determined by whether the amount is greater or less than 0 (if there is no entity in front no energy is transferred)

absorbEnergy transfers energy between the entity and the tile it inhabits – the direction of transfer and amount transferred depends on
the amount of energy in the tiles energy pool. If the tiles energy pool is full energy is transferred from the tile to the
entity and vice versa.

Memory transfer
giveMemory transfers memory from the entity to the tile or entity in front depending on whether the tile in front is inhabited – if the

tile in front is higher the entity supplies the energy required to raise the memory – if the tile in front is lower the
memory being transferred gains the energy that is generated

18

Adam Cubitt Virtual Evolutionary Worlds

takeMemory transfers memory to the entity from the entity in front – if the tile in front is higher the entity gains the energy
generated – if the tile is lower the entity supplies the energy required to raise the memory

Energy ↔ memory conversion
convertEnergyToMemory converts a specific amount of energy into memory

convertMemoryToEnergy converts a specific amount of memory into energy

Results
To date: lots of dead entities, lots of plants and a few live births from
memory being dropped off cliffs.

Conclusion

The last experiment
As yet the last experiment has not produced anything spectacular but it
has revealed several new problems that need to be addressed. As such it
seems fitting to conclude with a brief discussion of some of these issues
and ways in which they might potentially be resolved.

Stagnation
In its current state the last experiment clearly suffers from the problem of
stagnation (as described in experiment 2). In a first instance the world is
extremely active however it quickly settles into a much more static state.
There is no obvious solution to this occurrence (and, at this stage, it is not
clear if it constitutes a problem or not). One possible cause is the lack of
instructions that allow entities to investigate their environment. Without
such instructions the external stimulus on the entities is practically non-

existent. Results from the second experiment suggest that collapse into a
steady state is inevitable without outside influence.

Plants
The entities that survive the initial flurry of activity and persist tend to
behave like plants. These plants subsist in areas where energy is plentiful
by continuously absorbing energy from the environment. As the energy in
the environment depletes a steady state is reached: any energy the entity
looses to the environment is immediately reabsorbed. This is an
interesting result, but ultimately it points to a flaw in the world design
since it renders survival too easy. Finding a way to replace the absorb
instruction is not as simple as it may sound, since it presents the only
means by which energy released into the environment can be reacquired
by entities.

Searching for evolutionary worlds
It is apparent from this experiment that drastically different results can be
achieved by altering initial parameters. The rate at which entities die and
their behaviour can be altered radically by changing parameters such as
the conversion ratio between energy and memory, the maximum number
of threads per entity, the initial quantities of energy and memory and the
weighting of the instruction set. One idea that might be worth exploring is

19

Adam Cubitt Virtual Evolutionary Worlds

the use of a genetic algorithm to search for initial parameters conducive to
evolution. In other words, searching for evolutionary worlds using a
genetic algorithm.

Better visualisation and interaction
Another problem that is apparent is the need for a much more
comprehensive means of visualising and interacting with the world. The
original intention was to have a 3d representation (i.e. where the height of
tiles is not represented by colour but displacement in the third dimension).
Several other additions would be extremely beneficial:

 It would be useful if it entities were easily identifiable.
 A system similar to that used in experiment 2 that allowed

investigation (and potentially modification) of an entity’s program
during execution would be a useful tool.

 Loading and saving of instruction sets, entities and even entire
populations/worlds to disc is almost essential if progress is to be
made.

 Exposing much of the configuration through a scripting interface
would also be extremely beneficial as it would forgo the need to
recompile the system each time a change is made.

Closing remarks and acknowledgements
From a personal perspective the progression of this project from the initial
ideas to its current unfinished state has involved an enjoyably self-
indulgent approach which consisted of pursing the ideas that interested
me. This process has inevitably left many rocks unturned, and I hope that,
at some stage, there will be time to explore some of these avenues and
ultimately develop a working product.
For all that has been achieved to date I am indebted to Eike Anderson for
his enthusiasm and support; Michael Beeson for several insightful
conversations and Jun Shimoda for the lone of David Attenborough’s Life
on Earth.

References
 [1] Wikipedia, Evolution (Scientific theory) [online], no date. Available

from: http://en.wikipedia.org/wiki/Evolution [accessed 5 March 2005]
[2a] Ray, T. Tierra [software], http://www.his.atr.jp/~ray/tierra/ [accessed 5

March 2005]
[2b] Anon. What Tierra is [online], no date. Available from:

http://www.his.atr.jp/~ray/tierra/whatis.html [accessed 5 March 2005]
[3] The Digital Evolution Laboratory of Michigan State University,

Avida [software], ca. 2001. Available from:
http://devolab.cse.msu.edu/ [accessed 5 March 2005]

[4] Dewdney, Alexander Keewatin, Corewar [software], no date.
Available from: http://www.corewar.info/, [accessed 5 March 2005]

[5a] newCreationism.org [online], Available from:
http://www.newcreationism.org/index.html [accessed 5 March 2005]

[5b] Miller, Kevin The Bugs with The Bugs [online], no date. Available
from: http://www.newcreationism.org/CreationArticle15.html [accessed 5
March 2005]

Bedau, Mark, The scientific and philosophical scope of artificial life
[online], no date. Available from:
http://citeseer.ist.psu.edu/cache/papers/cs/28596/http:zSzzSzwww.reed.eduzSz~
mabzSzpaperszSzleonardo.pdf/unknown.pdf [accessed 5 March 2005]

20

