
Innovations Report
Peter Dodds

Unit level AI library
research and development

1

Abstract
Artificial intelligence is used in modern computer games extensively such as real-time-strategies in
which each unit must behave intelligently to the players requests. In this paper and accompanying
designs and code I intend to explore the methods needed to develop the unit level AI in a real-time-
strategy game, and the possibility of encompassing these into a single standalone library. I explored
the issues of implementing algorithms such as A* pathfinding and steering.

2

Introduction
In modern computer games artificial intelligence (AI) has become one of the most crucial
components of success. Doug Lombardi, of Valve Corporation said “Everyone here agrees that the
great AI work done for Half-Life 1 was key to the first game’s success.” in an interview with
DriverHeaven. This is true of games ranging from the blockbust titles such as Half-Life 1, but also
of independent developers such a Introversion's Defcon [Morris, 2008]. This carries as far as small
time developers working on small scale games. AI can often be viewed as a complex and
challenging subject to break into, putting off these smaller developers. In these cases the best way to
increase the potential of any game would be to offer a set of AI functions which people working in
the area can use as a basis of more complex systems. What I have found through research is that
there are no free stand-alone AI libraries in wide distribution.

Initially I had intended to develop a library to encompass the whole field of AI in games but with
just a little research it became apparent that this was an unachievable task. Instead I set out to
research and experiment with creating the basis of a unit level AI system. Unit level referring to the
AI that controls individual autonomous agents within a game world. Through researching the
problems involved with this area I hoped to demonstrate the feasibility of creating an flexible
external AI library.

This importance of AI is no more so than in real-time-strategy (RTS) games. Even if all participants
are human players, all the units have to move intelligently and understand complex orders. I plan to
concentrate on the challenges RTS create for AI. In theory AI within these games can be extended
as far as to make agents complex individuals with independent control over they're priorities.

In addition I have concentrated upon to problems involved around 2D AI, though this doesn't mean
that these techniques would not transfer into 3D.

The eventual intentions of this project was to develop the structure for a future AI library that could
be implemented and developed in future projects.

AI systems
Real-time-strategy (RTS) games are based around war games, and the structure of command
involved with military-like operations. The actions in a game are based on a single order being
passed down and interpreted by the next level. At the very top is the game objective, a usually fixed
case that defines the winning scenarios (eg. destroy the opposing team). This is then passed to the
player, computer or human, who calculates how best to go about achieving that goal. The next level
of orders are then created, these are the strategic orders (eg. build defenses, attack enemy base).
This may stay within the previous manager's jurisdiction, or could be passed down to a middle
manager, a commander. The order is then split down once again to simple unit instructions such as
“move to this location” or “attack this unit”. When the unit, the AI agent receives this it splits it
down to the final level of orders, the most basics move and attack commands.

The mechanism of order storage and processing is the same for all levels of the process. The middle
managers and even to some extent the player, can be seen as AI agents, like the unit. Each has
different mechanics to carry out orders, but each processes them in similar ways.

Each layer in the order chain has personal goals to try and achieve, that affect the way in which the
order is carried out. Taking the example of the unit, it may have a heavily weighted goal of staying
alive. This may mean during particularly intense conflict, the unit may choose to disobey orders.
Whilst this particular scenario may not work, though in the Total War [Creative Assembly, 2000]

3

series this can often happen causing rapid changes in the battles outcome. A more likely situation
may be that an initial move order is converted into a series of moves but depending on the units
goals it may favor one route over another.

There are a collection of algorithms that are essential to an RTS. These are the searching and
processing of movement in the game world, regular problems for games. Navigation in games is a
two stage problem: firstly the pathfinding through static map elements and secondly the navigation
of smaller moving objects.

Pathfinding involves the searching of waypoints within a level. These waypoints give the search
algorithm an indication of how passable the terrain is and are interlinked to give a network of points
to be traversed. The search algorithm can be expensive, so using the most efficient method for the
structure of the game terrain can boost the AI performance. The most common search technique in
games is the A* search because it will always find a path if one exists. Also using a heuristic
function to calculate an estimate of the distance to the goal and node based costs enables the
algorithms behavior to be honed to the behavior of an agent.

An important note is that the A* algorithm may be the most common, but is not always suited.
Often a combination of search techniques are used for different problems.

“...you're searching only small data sets, like an AI state graph, or a dozen or so
path nodes in a room, you can use Dijkstra's algorithm, which is particularly effective
when all the AI's in the room will path find to the same node, since the algorithm will
fill out data for the whole network rather than just the start and end nodes. Sometimes
even a breadthfirst search is enough.”

Heyes-Jones, 2007

The application of a layered pathfinder would be difficult to implement in a for-all-cases library. It
would require an in depth understanding to the game scale, construction and limits.

Navigation of dynamic objects, or steering, involves far more reactionary processing of the game
world. Each agent needs to be able to react to changing environment, either by recalculating its path
or steering, making small alterations to its movement to avoid colliding with objects. This doesn't
use the waypoint system of the pathfinding algorithm, but requires information about collidable
objects within the scene. The testing against collision objects is only intended to give an indication
to the agent, and does not require the full library of methods associated with collision detection.
Many of the techniques of avoidance are set out in Reynolds [1999]. A basic collision avoidance
would be to test if anything occupies the volume created from the movement of the agent in the next
n turns.

Pathfinding using A* search
1. Theory
The A* algorithm searches through a ordered graph network of waypoints, looking for a goal
location. At each iteration the waypoints are divided into two separate groups, OPEN and
CLOSED. The OPEN group consists of nodes that are candidates for examination. On the first
iteration the OPEN group only contains one waypoint, the starting position. The CLOSED group
contains those waypoints that have already been examined. Initially the CLOSED group is empty
[Patel, 2008a].

4

Figure 1: Pseudo code of the A* search algorithm (Patel, 2008a)

At the start of each iteration the best waypoint is selected from the OPEN group and this is then the
current waypoint. From the current all the neighboring waypoints are processed and the cost of each
is assessed, the current waypoint is saved as the neighbor's parent, and then they are placed into the
OPEN group. Once all the neighbors have been processed, the current waypoint is moved from the
OPEN group to the CLOSED group.

Figure 2: Effect of heuristic function on A* search (Patel, 2008b)

The structure of the algorithm stays the same in most cases of it's use, what has the largest effect on
the solution is the method of calculating the cost, g(). This is used in A* to determine the advantage
of picking one waypoint over the other from the OPEN group. Each waypoint stores this temporary

5

OPEN = priority queue containing START
CLOSED = empty set
while lowest rank in OPEN is not the GOAL:
 current = remove lowest rank item from OPEN
 add current to CLOSED
 for neighbors of current:
 cost = g(current) + movementcost(current, neighbor)
 if neighbor in OPEN and cost less than g(neighbor):
 remove neighbor from OPEN, because new path is better
 if neighbor in CLOSED and cost less than g(neighbor): **
 remove neighbor from CLOSED
 if neighbor not in OPEN and neighbor not in CLOSED:
 set g(neighbor) to cost
 add neighbor to OPEN
 set priority queue rank to g(neighbor) + h(neighbor)
 set neighbor's parent to current

reconstruct reverse path from goal to start
by following parent pointers

• At one extreme, if h(n) is 0, then only g(n) plays a role, and A* turns into
Dijkstra's algorithm, which is guaranteed to find a shortest path.

• If h(n) is always lower than (or equal to) the cost of moving from n to the
goal, then A* is guaranteed to find a shortest path. The lower h(n) is, the
more node A* expands, making it slower.

• If h(n) is exactly equal to the cost of moving from n to the goal, then A*
will only follow the best path and never expand anything else, making it
very fast. Although you can't make this happen in all cases, you can
make it exact in some special cases. It's nice to know that given perfect
information, A* will behave perfectly.

• If h(n) is sometimes greater than the cost of moving from n to the goal,
then A* is not guaranteed to find a shortest path, but it can run faster.

• At the other extreme, if h(n) is very high relative to g(n), then only h(n)
plays a role, and A* turns into BFS.

cost, and it is recalculate when each waypoint is assessed as a neighbor of the current. The
calculation is specific to the game terrain, but would usually involve adding any terrain penalties
and the movement cost for going between the current and the neighbor.

When the best waypoint is being got from the OPEN group, they are assessed on they're cost, but
also in addition there is a heuristic function, h(), which is intended to make an estimate of the
distance from the waypoint to the goal point. The heuristic function gives the most control over
A*'s behavior.

The heuristic function needs to be optimised for each game, and possibly to specific situations in a
game.

2. Implementation
To get to full understand the A* algorithm and the elements needed to be give the user full
flexibility I developed a pathfinding component as part of the library prototype. It is contained in
AiPathfinder.(h/cpp), AiPathNode.(h/cpp) and AiPath.(h/cpp). The pathfinding algorithm inside the
class AiPathfinder, and uses AiPathNodes as the representation of waypoints in game. Since the A*
algorithm is very well documented I was able to implement it with ease. The main challenge was
deconstructing it into parts which would be essential if a user were to want to customise the
behavior of A*. It is intended that the core A* code does not change, but that the user specifies the
cost functions.

Astar_GetSuccessors, Astar_CalculateCost and Astar_EstimateGoalDistance, represent the A*
methods; get neighbors, calculate neighbor's cost g(), and the heuristics function h(). When the
AiPathfinder is derived into a custom game pathfinder rather than having to reimplement the A*
search, any of the methods can be replaced if needed. Otherwise they can be used in they're default
setup.

The AiPathNode also contains data specific to the A* algorithm, temporary data is denoted with
'aStar_' before the name. The temporary data is usful stored in each waypoint, but for memory
management purporses it is better to keep the variables to permenant or non-function specific data.

Both the AiPathfinder and the AiPathNodes have been implemented only to perform the A* search.
As stated earlier, this may not be the optimal method of pathfinding for certain situations. With
further development these classes and method should be expanded out into several seperate classes.
If there were abstact base classes of AiPathfinder and AiPathNode with no specific search method
implemented, but containing pure virtual method such as CalculatePath (), then the specific A*
search could be confined to a derived class such as a theoretical AiPathfinder_AStar. This would
implement CalculatePath and add the virtual methods associated with A*.

In addition this basic setup does not take into account many in game situations that would require
more complex management of waypoints. In AiPathfinder there is only a single AiPathNode array,
m_pathnodes. This means there is only a single set to test ever. Looking at the example of fog-of-
war, the obscuring of areas of a RTS map because they haven't been visited or are not in any units
visibity range. When deciding on a long distance path it may be preferable that some units stay
inside safe areas, and so avoid areas obscured by fog-of-war. With a single list model there is no
distiguishing bettween players, and so no way to label which waypoints are visible to each player.

6

A possible solution to labling waypoints would be to add data relating to the player inside of the
AiPathNode. This would mean adding excess temporary data to a class that a game may wish to be
writen to file. A better solution may be to keep groups for certain conditions, like player's visible
locations, in AiPathfinder.

In the future some optimisation of the A* algorithm can be performed, primarily with the
management of memory. This can be improved in some cases such as choosing different methods of
storing data in OPEN and CLOSED groups, along with the organization of neighbors. These issues
are discussed at length in Patel (2008a), notes on Set representation. The implementation of
different data structures depend predominantly upon the operations carried out on the groups and
the frequency of the operations.

Steering and Collision Avoidance
Once an order has been received by an agent it must be broken down into mechanical operations
that the AI understands. Taking the example of a path generated by the pathfinder, the agent
receives a list of waypoints to navigate. First the list is translated into a series of move commands,
then these moves are executed by the agents steering. The steering component manages the input to
the locomotion elements of a agent, which would be unique to an agents construction. This is the
level of processing where agent receives direct information about the world, and acts upon it to
primarily avoid collisions, but also to pursue and flee from other agents.

When placed within a hierarchy of motion behavior, pathfinding falls into the first layer, Action
Selection. Additionally the agents broken down move commands are also in this top layer. The
actually ongoing execution of the movement by the agent, and the processing corrections to the
action where necessary, lies within the middle layer of motion behavior. Finally as stated in Figure
3, the final layer is the processing of the required movement into steps or animation cycles.

Figure 3 : A hierarchy of motion behaviors (Reynolds, 1999)

Reynolds [1999] develops many of the methods of steering for autonomous agents. These agents
are based upon a simple vehicle model based around position, velocity and orientation. It is
controlled by apply vectors forces to the agent, altering it's direction an speed. Though all of the
agent behaviors are of interest to developing an all round AI agent library, of particular interest are
the arrival, obstacle avoidance, separation, and unaligned collision avoidance behaviors.

The most basic is arrival and its related behavior, seek. Arrival, which can be used as the basic
mechanic behind the move command, involves traveling to a single point and stopping without
overshooting. Seek, which arrival is derived from, is the attraction towards a point. For the moving
along a path, with or without sets of move commands, Reynolds [1999] has a path following
behavior. This keeps the direction of the agent close to the line, allowing a more natural movement
such as cutting corners.

7

Figure 4 : Seek/flee and arrival behaviors (Reynolds, 1999)

Separation is part of a more general set of behaviors to do with flocking. It is intended to keep
groups of agents from getting to close and risking a collision. If neighboring agents are within a
certain radius they are used to calculate a repulsive force. This repulsion is in the opposite direction
of the average position of the neighboring agents. This collision avoidance technique does not
require any information on any of the agents collision objects. Note that none of the collision
avoidance behaviors actually require any form of actual collision detection, and so can
predominantly be estimations.

Figure 5 : Separation behavior (Reynolds, 1999)

Obstacle avoidance involves the detection of collisions with objects and agents in the game world.
this concentrates on static objects that an agent can collide with. It is tested by testing if a volume or
plane created by the future motion of the agent. If it crosses a collision object, then a force is
applied to correct this. A simpler version demonstrated by Reynolds [2004] using the containment
steering behavior. In this case rather than testing a volume, the agents test points within the it's
future path.

Figure 6 : Obstacle avoidance and containment behavior (Reynolds, 1999)

8

Collision Estimation
With both obstacle avoidance and unaligned collision avoidance behaviors there is a need to test if
the agent is about to run into a collision object. In the case of an external library it is not possible to
read how the game has stored collidable objects, so an interpretation of the game world must be
stored. The prototype stores this data as a AiBlock (a blocking-object), which is a base class
containing the information needed to do bounding box calculations. This has then been derived into
two separate collision objects, AiBlock_Circle and AiBlock_Polygon. AiBlock_Circle as the name
suggests is a circle defined by a radius and position. AiBlock_Polygon stores a series of points that
define a convex polygon, convex due to make collision tests simpler.

Figure 7: steps to test a point-inside a polygon. First using bounding
box, then testing which side the point lies of each face.

To estimate the collision detections I started by for each collision object setting up a test to see if a
point is within the collision shape. For bounding-boxes and circles this is a simple test to see if
either it is within minimum and maximum limits, and if the distance of the point is within a radius
respectively. Polygon point-inside detection is more complex and it is for this that the shape must
be convex. Once the point has been testing against the bounding-box, each face tested. The position
of the point is tested in comparison to the face. If there is an inconsistency, it is to the right of all
faces except one, the point is located outside of the polygon.

Prototype Implementation
1. Structure
The prototype, called BUG, is structured around the AiManager, this is a singleton class and so
once called can be accessed from anyway in a game. It is intended to act as a hub from which the
game is able to access AiPathfinder and the agent, AiAgent.

The prototype is intended to experiment with the design and implementation of a flexible AI agent
library. Taking what has been found researching pathfinding and steering I initially started by
developing methods of storing AI data which would interface with an unknown game system.

The major issues are that the AI system needs a central hub from which data is processed and

9

edited, but most, if not all the data will already be in some form stored within the game. A
possibility would be to copy all the data from the game database, and store it within the AI
structures locally. This method is unadvised firstly because of the amount of data the would need to
be duplicated. In just the case of waypoints, which may just be based upon a low resolution polygon
map of the game world, there could be several thousand points duplicated. In addition to the
memory usage the data would have to be updated with any changes, causing excess set operations.

The solution I adopted when implementing the agent class is to use an abstract class to track the
data. With this solution the user can choose how to manage the data and as to whether to store it as
part of the game world data, or as a secondary AI data structure.

Figure 8 : UML diagram demonstrating a tracked class.

2. Tracked Class
These classes are stored by the game, but have to be linked back to the AiManager so the data can
be read and edited. These have been implemented by creating abstract classes to represent AI
components that the game must derive from to use. When the abstract class is called the constructor
notifies the AI library by adding itself to a protected array inside AiManager. Then when the
derived class is deleted or goes out of scope it is erased from the same array. So in the case of
AiAgents, all instances of an agents available from the central AiManager class, enabling testing a
single agent against all of its neighboring agents for separation behavior discussed in Steering and
Collision Avoidance.

This method of tracking is only used in the prototype to organise the AiAgents, but would be
effective at storing AiBlocks and possibly, in keep with a uniform method of data management, also
suitable for AiPathNodes.

This system is not perfect, specifically because it tracks all agents in memory irrespective of
whether they are suppose to be used in game calculations. Possibly the best solution to this would
not be to alter the method of tracking, but rather to add variables to the abstract classes, such as
AiAgent, that distinguish whether it should be considered in use.

An additional issue if this were to be applied to the AiPathNode would be the need to make more
differentiation between players. Returning to the fog-of-war problem discussed in Pathfinding using
A* search, Implementation; how does the pathfinding algorithm determine for each player which
waypoints are visible. Since this is a very common demand of a RTS game it is worth considering if

10

a AI Agent library should implement methods of dealing with fog-of-war. Once again the best
solution would be to implement groups that hold pointers to the nodes visible to each player. Note
that this would not be necessary for agents since they are unique to a player, and blocks have no
need to be associated to a player.

3. Orders
The key requirement of a AI agent is that it must be able to process orders given to it. These orders
inherently cannot be defined by the library since they are game specific. The agent therefore also
has to be able to process any order the game requires it to. These orders are stored as classes derived
from AiOrder, examples can be seen in AiMove and the further derived AiMove_Goto.

Inside the agent there are stored queues of orders being sent to it. These queues are able to be
reorganized, have priority orders inserted in front of less important orders, but only remove orders
from the head of the queue. This queue stored data as pointers to AiOrders, meaning it could refer
to any derived order passes to it and since AiOrder has a type ID that can be used to determine the
interface theoretical it wasn't a problem. When looking at the transfer of data from the game, which
was giving the order, to the agent, then there was a problem with how to communicate what was
contained in the unknown derived class.

The solution I came upon was to keep the orders internal to the agent. When a new order is
requested it is allocated within AiAgent, the pointer is stored in the queue. As it has been allocated
the memory will not need to be copied and can be managed internally. Specific data can then be
input via a returned pointer. When the being processed the type ID is tested, and if it can be
processed it will. This all requires that the game implements customised versions of the new order
function and the process order function.

Initially AiAgent had been designed with a single order queue, but this became clearly unworkable.
Looking at the simple case of a agent being ordered to fire at another agent. First the agent must
move towards the target then fire at it, but these action do not want to be performed in sequence. A
viewer would expect the agent to fire upon the target as soon as it was in range but also to continue
to get closer to the target to improve any possible range bonuses. These are a set of orders that are
processed each turn simultaneously. In the prototype design there are two queues to hold movement
and actions, along with a state flag which can be used to effect how it .

Only two order queues maybe sufficient for most game agents but it could be restrictive in some
cases. Ideally the game should be able to implement several order queues and since they have a
specific data management design it would be good if broken down into duplicable elements. The
game could have an expanded number of queues and even dynamically change the number.

4. Problems and Improvements
Within the prototype there are several issues that have only come to light under critical analysis.
These have prominently arose from the implementation of improved data management, such as the
tracked class AiAgent, after an initial component has been developed, the AiPathfinder and
AiPathNode classes.

One of the central concerns about the prototype is this inconsistency between data storage. In the
case of AiPathNodes the it would be very advantageous to change the waypoint to be stored
similarly to AiAgent. In they're current data structure doesn't allow them to be derived, and so
customised. If the user were to have to store them, and they be tracked in AiManager, then they
could expand the waypoints to suit the game structure.

11

Another issue, looks again to the AiPathNodes and the specification of data to calculate appropriate
paths. If we consider the case of a car and a hovercraft, these two agents require different weighting
on waypoints. With the example of a hill and a river; the car will be penalised the most over a river,
but the hovercraft will have little to no penalty on the river but may suffer more on the hill. This
demonstrates the effects of agent specific waypoint cost.

In the current implementation agents are not considered in pathfinding, and so it is not possible to
weigh the costs differently for each. A method considered would be to move the entire pathfinding
calculations into the AiAgent class. This would localise the the calculation, allowing for access to
the agent type and the player, if that were to be stored in the agent.

The last concerns are based predominantly upon the detailed organisation of data within the library.
The amount of data stored within many of the classes is not consistent with the usage of the class.
In the cases of the AiPathNode which is a data class, it stores basic location and cost data, in the
prototype though it contains temporary data which is only used by one operation. This issue is not
sever but should be streamlined if the library were to be released. Secondly there is occasionally
holes within data management structures. By this I mean that in some cases where data is not
intended to be accessible to change or a pointer is not intended to be available to be deleted. It is
important that these are cleared up.

Figure 9 : Simplified final design of library, See Appendix for full page diagram

12

Future Design
The structure of the prototype is largely a combination of initial planning and experimental
implementation of algorithms and data structure. Due to this it has ended up being a collection of
method in an unorganised systems structure.

The final design in Figure 9 shows many of the improvements suggested earlier (Note that the
AiManager maybe part of the game database, but is not illustrated in that form). One key difference
is the organisation of data into a central hub with AI object classes treated in the same way. In
addition to this the pathfinding functions have been moved into the agent, and the path itself is
stored within the agent. It is not a perfect configuration, some ideas of improvement would include
introducing the possibility of a group class which would could path find for a set of agents.

Conclusion
Though the initial of creating a working AI library was not accomplished, I thoroughly explored the
areas of pathfinding using the A* search algorithm, steering and object avoidance developed in
Reynolds [1999], and the architectural design of a AI agent. I developed prototype classes and
worked on system designs for a first implementation of the real-time-strategy (RTS) game library.

The area of unit level AI for a RTS game is possible to encompass in a single library but for
advanced systems this would probably be a hindrance. The AI for any game has to be honed to get
the optimal gameplay out. This means that for anything that requires beyond the most basic control
will find restrictions. Though this does not mean that a standalone library is not feasible, just that
anyone interested in advanced uses would be better to look at the algorithms incorporated within the
library.

The methods researched and developed in this project will go on to be used in my future projects
and games.

References
DriverHeaven, Interview with Valves Doug Lombardi Available from:

http://www.driverheaven.net/dhinterviews/doug/ [Accessed 13 March 2008]
Morris, M (2008) Introversion Blog, Rise of the machines. Available from:

http://forums.introversion.co.uk/introversion/viewtopic.php?t=1216 [Accessed 13 March 2008]
 Reynolds, C. W. (1999) Steering Behaviors For Autonomous Characters, in the proceedings
of Game Developers Conference 1999 held in San Jose, California. Miller Freeman Game Group,
San Francisco, California. Pages 763-782.

Reynolds, C. W. (2004) Containment steering behavior. Available from:
http://www.red3d.com/cwr/steer/Containment.html [Accessed 13 March 2008]

Nareyek, A (2004) AI in Computer Game, Availible at :
http://doi.acm.org/10.1145/971564.971593

Patel, A. (2008) Amit’s Game Programming Information, Implementation notes. Available
from: http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html [Accessed
12 March 2008]

Patel, A. (2008) Amit’s Game Programming Information, Heuristics. Available from:
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html [Accessed 12 March 2008]

Heyes-Jones, J (2007) Avoiding Ten Common Game AI Mistakes. Available from:
http://justinsboringpage.blogspot.com/2007/10/avoiding-ten-common-game-ai-mistakes.html
[Accessed 12 March 2008]

Creative Assembly (2000) Game. Shogun: Total War.

13

Appendix
Final AI systems diagram with A* agent.

14

Earlier system designs

15

