Innovations Report

A Prototype Digital Asset Management System
for Maya Scene Files

Matthew Ovens
BACVA3
2006

M Ovens €1461632 BACVA3

Abstract

Digital Asset Management is not usually considered an interesting subject, but it has
become an integral part of most companies’ workflow. Without it, production
pipelines become convoluted and difficult to control, and time and money are wasted.
This report looks at what DAM is, why it is useful and how aspects of it can be
implemented into a prototype asset management tool designed to work with Maya
scene files. Inspiration for the tool was taken from commercial DAM applications, as
well as personal opinions on what features would make it useful. The result of this is a
tool which can display Maya files as thumbnails and integrates file versioning.

What is Digital Asset Management?

An asset is generally thought of as anything of value owned by an individual or a
group. In respect to the world of media production, digital assets can be defined as
any digital media files required by a user. In order to manage assets, they must have
certain rights associated with them, or have metadata attached in order to more easily
identify their contents, but ideally both. A file lacking either of these attributes is not a
very useful asset, and the greater the number of files in a project the more important
this information becomes. Without it, files become difficult to manage and hard to
find.

mages
WVideo Files

Audio Files

[\

Figure 1 Example of a theoretical DAM system setup

In its simplest form, Digital Asset Management might consist of merely organising
your files with logical naming and placing them in obvious locations. However, this

M Ovens c1461632 BACVA3

may not be enough to track their development and ensure that they are not lost or
overwritten accidentally. Using a DAM system can take a lot of the work out of trying
to maintain a useable set of assets, and is now common practice in many industries.

Features typically associated with asset management software
File organisation

When working on a project, it is essential to know exactly where required files are. If
files are not able to be found quickly, it can result in a much slower workflow —
something that should be avoided in virtually any industry. Attaching metadata to
files enables advanced search abilities, speeding up asset location and helping to
identify them. Such information might include the author of a file, the date it was
created and last modified, a description of its contents, etc. The loss of assets through
careless file management is also a potential danger and can bring a production
pipeline to a halt, but it can happen easily when dealing with large numbers of files.
This is almost never a problem when using a reasonably proficient asset management
system.

Version control

Versioning is an important technique for maintaining a history of changes made to a
file or collection of files. Most conventional version control methods are ideally
suited to text files, as it is possible to store the differences between different versions
rather than a new copy of the entire file. This is much more difficult when dealing
with binary files, such as images. For example, a simple tint operation will result in
every pixel’s colour value changing, so the new version of the file is entirely different
to the old in the eyes of a computer. Using version control shows users which is the
latest revision of a file and allows them to revert back to an older edition of a file
when necessary. One benefit of this is that if an asset is judged to have developed in
an undesirable direction, a previous version can be used as a basis for redevelopment.
This is a much faster solution than either starting again or trying to reverse engineer
the asset.

Version comparison

A user will often wish to see the differences between alternative versions of a file.
This can be a slow process if there are many versions and each one must be opened to
determine how it differs from another. There is also the possibility of having to open
the versions multiple times because the user is unable to keep the differences in mind
during what could be a lengthy comparison process, slowing assessment further. A
visual side by side comparison of file versions is a much simpler method to use, and
allows a user to identify a version they are looking for much more quickly.

File logs and annotation

File logs can help users by informing them of what has changed between versions of a
file, who last worked on it, the date and time it was last worked on, and more. It can
aid in ascertaining the correct version of a file to use, or can permit a supervisor to
leave notes on changes they would like to see in a file. At the end of an asset’s
development it can also be used to mark it as a final version.

M Ovens c1461632 BACVA3

User access control

The larger a team is, and the greater the number of people working on it, the more
important it becomes to allocate access to assets accordingly. Members of a team
working on a project should have access to the assets for that project, but whilst others
might be authorized to view them, they should not be able to make changes to those
assets.

Thumbnailing and file preview

Digital Asset Management systems can benefit greatly from thumbnail views,
especially those that deal with multimedia files. It enables assets to be identified by a
user far more easily, and makes sense in a situation in which most of the files being
handled are of a visual nature.

Why is it useful?

When dealing with any project larger than a few files, or being worked upon by more
than one user, managing the assets for that project becomes a necessity. Knowing
exactly which version of a file to use in can prevent costly mistakes and make a
production pipeline flow much more smoothly. In their book on implementing DAM
systems, Jenson et al. (2005, p.25) state that the five key benefits expected as a result
of asset management are:

Higher productivity
Organisational scalability
Increased reliability
Better quality

Greater flexibility

agrwdE

Increased productivity can be achieved by reducing the time taken to perform simple
filing tasks, giving content creators more time to do actual work. Implementation of a
DAM system will support the ability of a company to expand by providing a
structured workflow that can maintain as many projects and users as required. The
reliability of a business to meet the expectations and deadlines of its customers
improves, as monitoring the status of the elements of a project becomes far easier.
Quality increases as a result of more time to carry out work, and because the
occurrence of costly errors and losses is decreased considerably. Owing to the ability
to keep track of all aspects of a project, if changes are suddenly required they can be
implemented very quickly. These features are applicable whatever the size of the
group using the system, whether it is a small team working on a single project or a
large company working on many projects simultaneously.

Case study: A typical second year group project on the BACVA course

A second year group project consisting of five members starts with each member
deciding upon the roles they will fulfil. The student whose story they will be realising
puts themselves forward as director, and the other group members are happy to let
them have the job. As well as director, they also decide to take on some of the

M Ovens c1461632 BACVA3

modelling tasks, along with another student. Two of the three remaining members
choose to be animators on this project, and the last member agrees to do concept work
along with the lighting. They all agree that the remaining aspects of the project will be
shared out equally amongst them.

The student who agreed to produce the concept drawings gets to work, receiving input
from the group during their bi-weekly meetings and during the day whilst they are
working together. The art is created in sketch books and on sheets of loose paper, and
is all kept by the artist. After a few days of discussion and thumbnailing, they get
started on creating a first draft of the storyboard. Over the next couple of weeks, the
group go through several drafts of the storyboard, and the design work is revised.
Three weeks into the project they have final designs for the main character and half of
the props in the animation, and the modellers can start work.

A few days later, the group decide they have some scenes in their storyboard that they
will definitely carry through to the final version. The animators in the group feel that
this would be a good time to begin making an animatic, as they do not have much to
do at the moment. They scan the storyboard panels that they require and begin to edit
clips together. Meanwhile, the concept artist is still producing designs for the
environment and revising the storyboard.

Five weeks into the project, the group have a final version of their storyboard. The
new panels are scanned in and edited together to complete the animatic. The
animators have also started a blocktest based on the animatic they had so far.
However, no one has realised that one of the clips in the animatic has been made from
panels that have since been updated. The animators continue with the blocktest, but it
now contains sequences that are incorrect.

Two weeks after this, a problem occurs. In an effort to tidy up the project directories,
a member of the group accidentally overwrites a scene file containing a large portion
of the environment with a much earlier version. As there were no intermediate
versions, the models have to be built up from this basic scene. However, the person
that modelled it can not remember the design. The concept artist attempts to find the
design sheet, but believes that it was given to one of the modellers a while ago. The
design must be redrawn before the model can be rebuilt, and this takes an extra week
of work in total. In the meantime, the animators have begun animation, but they are
still using the incorrect sequence included in the blocktest.

After ten weeks of working, the project directories are filled with obscurely named
model and animation files. There has been some attempt to create a logical directory
structure, but files have slipped into the wrong folders. The lack of a consistent
naming convention means that they can not be easily identified. For example a file
called “mainCharacterWithShoes_02.ma” has been found in a directory outside of the
main character’s directory, but inside the directory, there is a file named
“mainCharacterWearingJacket_07.ma”. Without opening the file, there is no way to
tell which of these files is the latest version. Eventually, they discover that the file
outside the proper directory is the most up to date, despite the fact that it has an earlier
creation date. Apparently, the other model was imported into it to incorporate its
elements into the main file.

As the project deadline nears, the group begin rendering scenes. The file names have
still not been organised properly, and renders regularly have to be redone because the

M Ovens c1461632 BACVA3

wrong file has been used. Additionally, the members of the group forget which files
they have rendered and end up rendering several files more than once. This is a huge
waste of time, and the group end up having to stay up all night several times in the
week before the deadline in order to get the work done.

Eventually, the deadline arrives. The group has had to work up until the last hour to
produce their animation, and they feel slightly disappointed that it is not as polished
as they had hoped it would be. If they had had a structured way of maintaining all
their files and designs, they would have had a lot more time.

An example of an existing DAM system
Avid Alienbrain

Alienbrain is a well renowned production asset management system. It provides
sophisticated versioning functionality for all file types, as well as the operations users
expect in revision control software. Some of its features include: checking in and out
of files, user access control, attaching metadata to assets, file annotation and version
history viewing. The last two are especially clever when dealing with image files,
which are commonly viewed as being difficult to maintain in this regard. Images may
have notes left on them in diagrammatic form to point out exactly what the writer is
focusing on. For example, a comment about the size or shape of an element in the
image may be accompanied by a superimposed line drawing displaying clearly which
aspect is being mentioned and/or what the amendments should be. Viewing the
version history of image files is also more advanced than with other systems, in that it
allows the side by side visual comparison of different revisions of a file. This is the
only practical solution to version comparison in this situation, as traditional line
difference comparison is only applicable to text files.

All of Alienbrain’s features are accessible through its client, which is very visual and
allows thumbnailing and previewing of assets. This applies to files from asset creation
applications too, for instance Adobe Photoshop and Maya. With Maya (and other
supported 3D packages), thumbnails are created using a plug-in which lets a user take
a screen shot of the file to act as both thumbnail and preview image. The application
plug-ins also allow you to work directly with the Alienbrain repository, and provide
much of the functionality of the client.

Because of its huge feature set and suitability for working with a wide range of media
formats, Alienbrain is used by digital content creators around the world. However, it
is not inexpensive, and is therefore often an unfeasible option for small studios.
Clients include companies such as Electronic Arts, Sony Pictures Imageworks and
Lionhead.

M Ovens €1461632 BACVA3

¢ alirndrain Manages Chert & =0 x|
Fie B Ven Opatues Vol Tok b | M ONLR 0N BVUEDR v -ABR /R 2-0 | WLE A,
address: [{inbegr ston_Derra s Scmeslipace_ome.nb =] | At pranch: [k i =] befauk change etz [+ nramed -
|] Tes Views w]) B Lt Vi v]| |] My Change Seis - i
Lily sherbrsin {one projact] L] Change Sats
= () Inkegration Dy fon Liss) % (@) - Unnand -
& 20 Fles
3L 30 Soand
] Characters
%] Concept et
4l |_] Documents
4t (] bmage Phes
%] Markstng
4] Max Scenes

4] Scrvenshots [[Lint e
:' ™) Scurce Fles 24 Privvases « ibageation_ Do \M s S cirns\Snacs_ 5 0end imb *
TR

T e

5] ey Cx rive
- iy Documents
5] S My Working Folder
Tree Vi || Soach Tosl
| HE Reelesencas v
] space_Scere.mb
= = Automatic Beferences
i) Mother st b
31) Motherstipuma
a1) el bevg

3l) Spaceshipbmp
31 Spacedtip ma
& Sasll PG
#ff Manusl Refarences.
&) o Red eemrced By

Z\Dem_ProjactiMeys Soenes[Space_Soane mb, BES27S] (Screershat)
_Wasiagn Log | Aetsierces Preview: | Dtyect lnigochi || Actnaly Anabrs || Workdiom Anabtss | Sosich Tosl || Hetloy || MMVeting || Lal Vaow

Figure 2 Alienbrain’s user interface displays thumbnails and previews of Maya files created from
screen captures (image from Alienbrain User Guide [2005])

M M¥M Show Differences - Demo_Project|Screenshotsi0inaa, jpgiHistoryl2 D !x.

WLISAY. N\ Master\Screenzshotsh01naa.jpg [Server Wersion) WLISAL, AIE000NI02Y01naa_h1073742440 w001 jpg (Server Yersion)

Figure 3 Different versions of a file can be placed side by side for visual comparison (image from
Alienbrain User Guide [2005])

Features to implement in the tool

Of the many features available in DAM systems, the ones that are intended to be
implemented in the prototype are file versioning, checking in and out, version
comparison and thumbnail file viewing. These should be attainable within the scope
of this project and result in a useful tool.

M Ovens c1461632 BACVA3

How it was approached and the problems encountered

A versioning system
RCS - Using “diff”” to find differences between versions proved impractical

As the focus of this project is on asset management, and a large part of that is based
on file versioning, it was necessary to furnish the application with a versioning
method. The scope of the project did not afford the time to develop such a mechanism
from scratch, so the decision was made to use one already available. Open source
programs were therefore an ideal resource, as most could be used freely under the
GNU license.

The Concurrent Versions System is a widely used version control package. Primarily
designed for collaborative software development, its system is based on handling text
files. The versioned files are stored on a server from which users may check them out
to a client machine as a “working” file, either read-only (e.g. for checking) or
editable. Once changes have been made to the file, it is checked back in to the server
as a new version. The user checking it in updates the log file to describe the changes
made, and the version number of the file is incremented. CVS also allows multiple
users to check out the same file and work on it independently. When both altered
versions of the file are checked back in, they may be merged to combine both sets of
changes. Of course, this only works with text files, where line by line comparison is
possible. If a merge fails, a user must manually decide which version to store.

Subversion is a more advanced system based upon the CVS architecture. It has more
efficient handling of binary files and a failsafe method for checking in, ensuring that
files are not damaged if the check in process is interrupted. It can also version entire
directory trees, and maintain their history if they are moved or copied, something
CVS is unable to do.

Both of these applications are built on top of the Revision Control System. RCS has
the basic functionality of checking files in and out, maintaining a version history by
storing the differences between versions (when dealing with text files) and keeping a
log for each revision. However, it is generally viewed as being tailored more to
individual users as it does not require a server/client setup, while still allowing
multiple user access. Since it has the core operations necessary to a versioning system,
and as the commands are relatively simple to use, RCS seemed an appropriate choice
to use in the prototype.

It also has an inbuilt method for checking the differences between versions of text
files using the diff command. This returns the disparities with the line numbers they
occur on. To begin with, this presented itself as a useful way to find the variations
between versions of Maya ASCII (.ma) files. As they contain text in the form of
Maya’s MEL code, the diff tool would work on them. It was thought that these
differences could then be applied to an earlier version of the file in Maya to bring it up
to date, and so show the changes between the revisions in Maya itself. This would
have been ideal, as a user could explore the scene to get a more complete
understanding of the differences. Unfortunately though, the nature of the MEL held in
.ma files is such that the differences between versions do not always contain the
context in which they are applied, i.e. changes made to an object in a scene will be
returned as a difference, but the object to which they are applied to may not as it could
have been created in a previous version. There is also the problem that operations

M Ovens c1461632 BACVA3

applied to objects in the scene are inserted after a command selecting that object. This
means that many of the lines in a file will not contain both a command and the
element in the scene it is being applied to.

Version 1

createNode transform -n "pCubel’;

createNode mesh -n "pCubeShapel™ -p *‘pCubel™;
setAttr -k off "_.v";
setAttr ".vir" yes;
setAttr ".vif" yes;
setAttr "_uvst[0].uvsn™ -type "'string” "mapl";
setAttr "._cuvs" -type "'string" "mapl";
setAttr '".dcc'" -type ''string" "Ambient+Diffuse";
setAttr ".covm[O]" O 1 1;
setAttr ".cdvm[0]" O 1 1;

Version 2

createNode transform -n ""pCubel;

setAttr ".t" -type "double3™ -0.822 0 0
createNode mesh -n "‘pCubeShapel™ -p "pCubel™;

createNode transform -n "pPlanel™;
setAttr ".t" -type "double3™ 0 0 -1.2
createNode mesh -n "pPlaneShapel” -p "pPlanel™;

setAttr -k off ".v";

setAttr ".vir" yes;

setAttr ".vif" yes;

setAttr _uvst[0].uvsn™ -type *'string’™ "mapl';
setAttr "_cuvs" -type "'string'" "mapl';

setAttr ".dcc" -type ''string" "Ambient+Diffuse";
setAttr ".covm[O]" O 1 1;

setAttr ".cdvm[O]" O 1 1;

setAttr -k off ".v";

setAttr ".vir" yes;

setAttr "_vif" yes;

setAttr ".uvst[0].uvsn™ -type "'string” "mapl®;
setAttr ".cuvs" -type "'string" "mapl';

setAttr ".dcc" -type ''string” "Ambient+Diffuse";
setAttr ".covm[O]" O 1 1;

setAttr ".cdvm[O0]" O 1 1;

Using diff on the two versions will return the highlighted lines — those that are different in each
version. The new polygonal plane in version 2 is returned as a complete set of MEL commands for
its creation, and could be recreated using this code. However, the change in the polygonal cube’s
translation values is returned as a single line without any reference to the cube itself. Executed on
its own, this command would not be applied to the cube, but rather to the currently selected object.

Figure 4 Example of the problem with using diff to return the differences between two versions of a
Maya ASCII file

M Ovens c1461632 BACVA3

Maya command line rendering — a slow process

To create file thumbnails required a method of producing a visual record of the
contents of each scene. The most obvious way to do this was to render each file. Since
only a small image was required for each file, the render times could be very small.
The simplest way to go about this task was to use Maya’s command line renderer. By
passing it rendering options and the name of a file, it would create the necessary
images. However, because it can only render a single file at a time, the render
command must be called once for each file to be thumbnailed. This is inefficient, as
when it is called it must start a new instance of Maya from which to render. The
loading of Maya takes time in itself, and when the time to load plug-ins and each
scene are also taken into consideration; multiple calls to the command line renderer
become a relatively slow solution to the problem.

C++ - application was difficult to use; not visual enough

Initially, it was decided to develop the project as a C++ application. Integrating the
RCS and command line rendering was achieved using the popen() function, which
forks the process and creates a pipe to enable commands to be sent the shell for
execution. After developing a prototype that worked from the command line, the
problem of a user friendly interface needed to be addressed. Whilst useable, the
application was not intuitive or very appealing from a visual point of view, and in
light of this it was felt that a graphical user interface would be beneficial to the
system. Therefore, Qt Designer was investigated as a means of doing this.

How the approach changed to overcome the problems
Changed from C++ to MEL

As the project is based around managing Maya scene files, and it is possible to create
user interfaces with MEL, the decision was made to translate the application into this
medium. This would allow tighter integration with Maya, and give access to the
higher level functionality built into the scripting language. It was also felt that
creating the user interface would be a faster and simpler process than attempting to
learn to create one for a C++ application, and would have the advantage of not being
limited to one platform, as the majority of MEL commands are the same regardless of
which operating system Maya is being used with. One disadvantage to coding in MEL
rather than C++ is that it is a scripting language, and therefore interpreted. This means
that the script is run through an intermediary program (Maya) which translates it into
code which can then be executed by the computer processor. While this can lead to
slower execution, the benefits it provides were felt to be enough to justify the move.

The popen() command also exists within MEL, so this could still be used. It also has
the advantage of working under the Windows operating system too, whereas the C++
command is not supported. As well as this, MEL provides a system() function that
allows single lines of instructions to be sent to the shell for execution. This is useful
when it is not necessary to send further directions to the process.

10

M Ovens c1461632 BACVA3

string $result = system(““co /usr/projects/file.ma’);

The system() function returns the result of the command it executes as a string. This is valuable if
you wish to check whether a command has executed properly, or require the output generated by
the command inside your MEL code.

Example 1 Using the system() command
Used popen() and “maya -prompt” to pipe file rendering for faster results

Due to the inefficiency of the command line rendering method, other techniques were
looked for to perform the job of thumbnailing. One solution which presented itself
was to use the popen() function to open a pipe to a command prompt version of Maya.

This loaded an instance of Maya without the GUI in which each file could then be
opened and rendered, rather than loading and unloading Maya for every render
required. Additionally, the -noAutoloadPlugins flag was used to speed up the load
time by preventing plug-ins from being initialised. Because the popen() function
creates a pipe to the process it initiates, commands may be sent to the process as
though it were a file using fwrite until the pipe is closed using the pclose() function.
Using this method meant that the MEL render commands could be used and render
settings within the scenes could be accessed, giving a greater level of control to the
process. This provided a substantial time saving to the thumbnailing procedure.

int $pipe = popen(“maya -prompt -noAutoloadPlugins™, “w’);

The returned integer is a file descriptor to the pipe created. A pipe is way of directing the output of
one program into the input of another, and is only able to send information one way. In this case,
popen has created a pipe to a command prompt instance of Maya. The “w” indicates that the pipe
can be written to, but using an ““r’” would mean that it could be read from. Sending instructions to
the piped process would be done using fwrite, e.g.

fwrite $pipe “file -open \’/usr/projects/file.ma\”’;”’;

This line will write the command in quotes to the pipe $pipe, opening the specified file in the
prompt version of Maya. Note that the quotes within the command must be escaped using the
forward slash, else the string would terminate prematurely. If the pipe is created using “r”, a
command such as fgetline could be used to read the result of the command executed using popen.

When using popen, it is important to remember to close the pipe once you have finished with it. It
may also be necessary to send instructions for the spawned process to quit. With regards to the
Maya process created in this example this would be done in the following way:

fwrite $pipe “quit -force;”;
pclose($pipe);

Example 2 Using the popen() command with a pipe

A problem encountered with this technique occurred when the render globals in the
file were set to render animation. In this instance, if software rendering was selected
whilst the tool attempted to create thumbnails it would cause the frame range
specified in the file to be rendered, as opposed to a single image. To prevent this from
happening, the render globals in the file were changed to disable the rendering of
more than one frame.

11

M Ovens c1461632 BACVA3

fwrite $pipe “setAttr defaultRenderGlobals.animation 0;;

This command is sent to the piped instance of Maya prior to the render command to ensure only the
current frame is rendered.

Example 3 Setting the animation render globals
Changed to rendered version comparison

After further deliberation on the challenge of comparing file versions, the possibility
of writing a custom diff function was explored. However, it was deemed to be beyond
the scope of the project, and so alternatives were taken into consideration. The most
logical of these was to create renders of the different versions for visual comparison
by a user. This could then utilize the thumbnailing method already developed and
allow a user to see the different revisions of a file side by side. Whilst this may not
provide as complete a picture of the changes that have taken place as the diff method
would have, when used in conjunction with the log information it should be sufficient
for a user to identify the version they require. The only caveat is that, as with creation
of the regular thumbnails, the default perspective camera must be in an appropriate
position in the scene in order to give a useful overview of the contents. If every
version of a file has the camera in a different location, it may make the comparison
slightly harder for the user.

The prototype
What it does and how to use it

The final product from this project is a tool which creates and displays Maya file
thumbnails, and allows the files to be versioned using RCS. Users can navigate to a
directory and set up the thumbnail and RCS directories if they do not exist. Scenes in
the directory may be opened, checked in and out, have version logs displayed, have
their versions compared and have their thumbnail refreshed using either hardware or
software rendering in Maya.

To begin with, a user runs the MEL script to define the necessary functions and
display the interface. If this is the first time they have used the tool, they may wish to
view the user manual in the About tab. Using the Browse button, they navigate to a
directory containing Maya scene files either in the directory itself, or in an RCS
subdirectory. If they have not been to this folder with the tool, they will most likely be
told that there is not a directory in which to store the thumbnails. In this case, they use
the Setup Directories button to create the required folders. Once this has been done,
hitting the Update or Refresh Thumbnails buttons will start the thumbnailing process.
If the folders already exist, the tool will proceed to create thumbnails for all the files
in the selected directory and the RCS directory. Preference is given to working
versions of RCS files, so thumbnails will reflect the contents of checked out files if
they exist. In the event that a user has already created thumbnails for files in this
directory before, the previous thumbnails will be displayed rather than new ones
rendered out upon each visit. This is designed to prevent unnecessary re-rendering of
files, which would slow the system down, but new thumbnails may be generated
using the Refresh Thumbnails button (for all thumbnails) and the individual Refresh

12

M Ovens c1461632 BACVA3

option in each thumbnail menu. By default, the tool will use Maya’s hardware
renderer to create thumbnails. This is in an effort to keep the thumbnailing process as
fast as possible. Users do have the option to use software rendering instead though.
The choice can be made using the radio buttons above the file view, and the selection
applies to both refresh options.

Subsequent to the rendering being completed, each thumbnail is placed into the file
view along with a label indicating the name of the file and whether it has been
versioned, denoted by the prefix “RCS:” (Fig. 1.5). Each thumbnail also has a popup
menu attached to it which is generated according to the state of a file at the moment
the user clicks the right mouse button. If the file is only present in the selected
directory, i.e. there is no versioned counterpart, the only options available to a user are
to open the file using the Open option, check it into the RCS directory and refresh the
thumbnail. Similarly, if the file is versioned the menu will allow the user to check any
version of the file out as either read-only or editable, display the version log and
render thumbnails of every version of that file for visual comparison. Additionally, a
user may open the file once it has been checked out, clean the file from the directory
if it is read-only, and can see if the file has been locked. Locking is indicated using (I)
and occurs when the file is checked out as editable. A locked version of a file can not
be checked out by another user in anything other than read-only mode. If it becomes
necessary to break a lock on a file, the user may also do this. Breaking a lock may be
required if a user accidentally checks out more than one version for editing, or if
another user requires immediate access to an editable version of the file.

X DAM Maya v0.1
_//File View\(\fer‘sion Comparison 4 About

I/bacuaE.f’mouens.f’TESTr” | Updatel Br‘owsel

Setup Dir‘ector‘iesl Refresh Thumbnails” Renderer: “* Hardware « Softuare

grassTest.ma groundTest.ma ovaryTest.ma A
plant11.ma RCS:test0Z.ma RCS5:modelTest.ma

RCS:test03.ma RCS:test.ma

Figure 1.5 The file viewer. This shows labelled thumbnails of Maya files in the selected directory

13

M Ovens c1461632 BACVA3

X DAM Maya v0.1 —[a]x

/ File View / Version Comparison ¥_About ™,

testDZ.ma v1.1 test0Z.ma v1.2 testDZ.ma v1.3
testdZ.ma v1.4 testoZ.ma v1.5 testdZ.ma v1.6

|

testdZ.ma v1.7 (1) test0Z.ma : working

Figure 1.6 The version comparison view. File revisions are shown chronologically

When a user chooses to check a file into the RCS directory, a window appears in
which they can enter either the file description or the log message for that version,
depending on whether or not this is the first time the file has been checked in. If the
file has not changed since it was last checked in, the log message is disregarded and
the file is removed from the working directory (the parent directory of the RCS
folder). The log can be viewed using the Info option in the menu. This brings up a
window containing details of the log messages from all previous revisions, the
revision number of the latest version, the authors of various revisions, dates and times
each revision was deposited and more. If the file was checked out as read-only, the
Check In option is replaced with a Clean option. This removes the file from the
working directory.

When dealing with versioned files, the Compare Versions option will appear in the
menu. This will render out thumbnails of all the versions of that file, including the
working file if there is one. It does this by temporarily renaming the working file if
there is one to protect it from being overwritten, after which it checks out each
revision of the file and renders it. The images are placed sequentially from earliest to
latest in the Compare Versions tab (Fig. 1.4). The file name and revision number are
displayed above each image, and as with the Check Out option, locked versions are
displayed using (I). The working file is identified with the suffix “: working”.

14

M Ovens c1461632 BACVA3

1 Check out Check in 4 cCheck out Clean
Info Refresh Info Refresh
| Compare Versions | | Compare Versions |

Figure 1.7 Menu for a checked out editable file Figure 1.8 Menu for a checked out read-only file

| 4 Check out |
E; Check in

Info Refresh dj

| Compare Versions |

Figure 1.9 Menu for a file that has not been Figure 2.0 Menu for a file that is not versioned,
checked out but is present in the selected

directory

Yersions

Read only

1.6 } | Editable
1.0 4
1.4 K
1.3
1.2
1.1

-

- v

Figure 2.1 Menu allowing a user to check out
any version of a file

Changes and additions for future development

Though the application works, and might be found useful by some, there are features
which could be developed to add functionality and improve performance.

Make the tool compatible with the Windows OS

The tool is currently only for use with Maya on UNIX based operating systems, and
will not function under Windows. This is because of the different ways in which their
file systems work. A Windows specific version of the tool could be created to remedy
this, or OS checking could be done in the current code to adapt the tool to whichever
system it is being run on.

15

M Ovens c1461632 BACVA3

Perform thumbnailing work in the background, and make it progressive

With the present setup, even though the rendering is perform in a separate instance of
Maya, the tool must wait for the renders to finish before it can create the thumbnail
view of each file. If the rendering process could be done completely in the
background, and the thumbnails could be added to the browser once they have been
produced, it would make it much more interactive. Making the rendering progressive
would also help enhance interactivity by displaying a lower resolution image initially,
which may be enough for a user to identify the file, but increasing the resolution in a
background process.

Include options to adjust the render setting, and include other available renderers

Giving users the power to change certain settings for the thumbnail renders might
help in situations where identifying a file requires being able to see shadows, post
effects or other features that are currently disabled to speed up the process. Some files
may also necessitate the use of other renderers. For example, a file in which
Renderman shaders have been used would benefit from being thumbnailed using a
Renderman compliant renderer.

Handle other file types: obj (and other importable formats), images, scripts, etc.

Currently, files are opened in the piped instance of Maya and then rendered to create
the thumbnails. However, it would be relatively easy to create thumbnails for .obj
files (or any other file format Maya can import). By checking the extension, the script
could decide whether to open the file or import it to perform the render. It could also
be made to handle image file thumbnails and script previews, making a more
complete asset management tool.

Render flick books of files, specifying a frame range according to the first/last frames
of animation in the file.

As well as displaying still images of files, it would be useful to be able to render a
“flick book™ of a file to be able to preview animations. The start and end frames could
be specified by the user, or could be retrieved from the file itself. This would be a
useful feature because a thumbnail of a file containing animation may not be enough
to identify it, or to distinguish it from other versions of the file.

Proper file annotation

In addition to version logs to keep a note of what each version contains, it would be
advantageous to have file annotation. This would permit users to leave additional
notes detailing any changes that should be made to it, whether it is a final version, etc.
It could also let other users to leave comments for those working on a file, allowing a
supervisor to comment on the work being done, for example.

Allow users to render a larger image of a file for previewing, and to specify the size of
the thumbnails.

Despite being a quick and practical way to identify files, the thumbnails may not

always provide enough visual detail for a user due to their small size. In this situation,
the ability to inspect a larger preview image of a scene would be a helpful option. It

16

M Ovens c1461632 BACVA3

might also be useful to be able to stipulate the size of the thumbnails created; if you
have files which contain a lot of fine detail, larger thumbnails could make the
identification of those files much easier.

More control over the camera thumbnails are rendered from.

At present, the system will only generate thumbnails from the default perspective
camera. It is possible, however, that a user may wish to generate the thumbnail from
another camera in the scene. In this situation, the ability to select the thumbnailing
camera from a list of those available in the file could prove useful. The list of cameras
would probably have to be stored outside the file, as opening each file to find which
cameras exist would be a very intensive operation. Alternatively, if dealing with Maya
ASCII files, the MEL code in the file could be searched to provide the names of the
cameras, which would be a much faster method.

Full file browser capabilities, allowing files to be moved/copied/deleted

As well as being able to view file thumbnails, it might also be useful to be able to
perform the regular file related commands, such as moving, copying, deleting and
renaming. Whilst such file maintenance can be performed from within the operating
system, incorporating this practicality could help to streamline workflow by removing
the need to change between the two environments.

Enable batch rendering of a file from the browser.

If a scene has been marked as a final version, a user may wish to have the option to
batch render the file from the thumbnail browser. This would provide the features of a
command line render, but could present a more user friendly method of invoking it by
showing the options in a clearer interface than the command line. It could also include
options to perform rendering on remote machines.

Setting user access lists for RCS versioned files.

Files versioned using RCS can have a user access list defined for them. This means
that only specified users have the ability to make updates to the file, but still allows
others to check out a read-only copy. Tying this into the system would be helpful if a
user is part of a larger team working on a project.

Change to a server based versioning system, such as Subversion.

Changing the versioning to a system like Subversion would allow files to be stored on
a central server, which is a more practical setup in a multi-user environment. It would
also provide more efficient handling of binary files, something which RCS is not ideal
for.

Allow users to send messages to people on a file access list to notify them of changes,
etc.

When a user wishes to convey details of the changes they have made to a file, or
modifications they feel are necessary, they could send a message to the appropriate
member on the access list for that file. The process could also be automated to send
messages whenever a new version of a file they may have worked on is checked in.

17

M Ovens c1461632 BACVA3

This would help to keep users up to date without the need for them to verify the status
of files manually.

Custom ““diff”” command to enable more thorough version comparison of Maya ASCII
files (could convert Maya binary files first).

Despite the fact that it was outside the scope of this project, the custom diff command
for use with Maya ASCII files would still be a useful feature in the system. It would
provide a way to show exactly where the changes have been made between versions
of a file, without relying on a user being able to spot the differences in a visual
comparison.

Conclusions and results

As companies become larger and projects become even more complex, Digital Asset
Management can only take an even more important role in ensuring a smooth
production pipeline. Whilst the tool created in this project is very basic compared to
commercial DAM systems, it still has useful features and might enable a project to be
managed more efficiently, even if only a personal project.

To test the tool, it was given to a few people familiar with Maya.

“| found the system fairly easy to get to grips with, once it had been explained
the first time. The interface is quite simple, but it seems to allow you to do a lot.”

“This would have been very useful for our group project last year. Managing
files was a nightmare, and the thumbnail view would have really helped.”

“l think it takes a bit too long to make the thumbnails,
but once they are there everything works fine.”

As a prototype, the tool fulfils the intentions laid out at the beginning of the project.

The project has introduced me to the theory behind DAM systems, and has taught me
how important they are to industry.

References/Bibliography
JACOBSEN, J., SCHLENKER, T., AND EDWARDS, L., 2005. Implementing a

Digital Asset Management System for Animation, Computer Games, and Web
Development, Oxford: Focal Press

TICHY, W.F., 1991. RCS—A System for Version Control, RCS manual

BELL, S., 2006. Writing Your Innovations Report
available from http://ncca.bournemouth.ac.uk/sbell/notes

AVID TECHNOLOGY, 2000-5. www.alienbrain.com :
website for Alienbrain® DAM software.

RIGHT HEMISPHERE, 1999-2006. www.righthemisphere.com :

18

M Ovens c1461632 BACVA3

website for Deep Exploration™ DAM software

PERFORCE, 1996-2006. www.perforce.com :
website for Perforce Software Configuration Management software

PICDAR, 2000-5. www.picdar.com :
website for Picdar’s Media Mogul® DAM software

SENO SOFTWARE, 2000-5. www.senosoft.com :
website for SENO Software’s P3dO Explorer photography and 3D viewer file
management software

WIKIMEDIA FOUNDATION, INC., 2001-6. en.wikipedia.orqg :

online encyclopaedia

entry for Perforce: http://en.wikipedia.org/wiki/Perforce

entry for CVS: http://en.wikipedia.org/wiki/Concurrent_Versions_System
entry for RCS: http://en.wikipedia.org/wiki/Revision_Control_System

Acknowledgements

Thanks go to Ari Sarafopolous, Eike Anderson, and Karl Erlandsen for help with
various aspects of C++ and to Jimmi Gravesen for help with MEL scripting.

19

http://en.wikipedia.org/wiki/Perforce
http://en.wikipedia.org/wiki/Concurrent_Versions_System

