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Rendering Fractals in 3D Geometry

Abstract

  An investigation into whether the volume of a piece of 3D geometry can be represented with 
the use of fractal patterns or 'fractal flames' with an end objective completing an offline (not real 
time) standalone renderer capable of performing this task. The final product will make use of 
information acquired through detailed research into how fractal patterns can be generated in 3D 
and how geometric volumes can be represented within a computer.
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1. Introduction 

  Over recent years, there has been a large amount of interest in producing ‘fractal art’ – “[Art 
which] is created by calculating fractal objects and representing the calculation results as still 
images, animations, music, or other media” (Fractal Art - Wikipedia, 2007).  As computing power 
has progressed, so has the amount of experimentation into these fractal objects.  Faster 
calculations have lead to far more complex and intricate designs and simplified software. 
Software such as Apophysis (2007) has opened up this relatively new medium to many potential 
artists who lacked the previously necessary programming and mathematical skills necessary in 
producing this art form.

  I became fascinated with fractal art fairly recently after discovering several images that made 
use of Scott Drave’s ‘Fractal Flame’ algorithm (Draves, 2003).  Soon after, I delved a little further 
into what the possibilities of fractals are and what people had managed to produce with them, 
stumbling upon a large collection of deviantART (2007) submissions, many of which making full 
use of the abilities of Apophysis.

Fig 1. Two images rendered in Apophysis. 'Cataclysm' by *Zueuk and 
'Power Core' by EminentEnd, both submissions on  deviantART (2007)

 However, as beautiful as these images are, they, within fractal art at least, all seemed to share a 
common theme of using the final constructed fractal object as the aesthetic piece of art.  Fractal 
objects are not really used as a display tool, but as an entity on its own which is to be admired. 
That said, many tools, outside the context of fractal art, make good use of the algorithms. 
Fractals are very closely related to proceduralism (Ebert, 2003, pg 436) through which procedural 
modelling, texturing and shading of 3D geometry is possible. For example, the modelling of 
clouds or a mountainous terrain in a 3D system could be done with the use of Fractional 
Brownian Motion (fBm), both illustrated in Procedural Texturing and Modeling (Ebert, 2003). 
These fractional procedures though, are often less concerned with the aesthetic beauty of the 
fractal algorithms they use but more with a specific task at hand.  What I wanted to investigate 
therefore, was whether it would be possible to take the procedures behind the beautiful fractal 
objects seen in fractal art and utilise them to display something much more constrained; whether 
they could be used to represent the volume of an object in 3D whilst still retaining their unique 
and pleasing aesthetic.

  With this aim, I went about researching for and piecing together the final product of this project; 
a piece of standalone software capable of performing off line (not real time) rendering of fractal 
patterns inside imported geometry dependent on a set of given variables.
   The software and the creation process behind it is best understood by breaking this project 
down into the different obstacles I had to overcome in the order I encountered them:

- Storing and displaying volumes
- The creation of fractal patterns
- Defining geometry, ‘inside’ and ‘outside’
- Functionality and usability

  As will be shown, whilst rendering fractals in geometry was paramount to the project, other 
areas of research also became relevant and challenging.
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2. Storing and Displaying Volumes

  Since what I had set out to do was in essence a volumetric renderer, I required a method of 
being able to display the inner volume of a piece of geometry.  One of the initial pieces of advice 
I received when starting this project was to look into the use of voxels.

  A voxel is essentially a three dimensional pixel (volumetric pixel); a small cuboid in space of 
predefined width, height and depth which can be assigned a colour value or just an identity of 
being ‘inside’ or ‘outside’ a geometric shape.  These voxels are collectively stored inside a voxel 
map – a volumetric pixel map of a 3D environment.

  
Fig 2. Voxels are simply a collection of small cubes in space.  (Piekniewski)

Voxels are put to good use in several real time games (for example, Sid Meier's Alpha Centauri, 
Crysis and Command & Conquer: Red Alert 2 (Voxel – Wikipedia, 2008)) for a variety of purposes 
and also in dynamic systems such as Maya’s fluids (Maya Help, 2008).  It’s unfortunate that at 
present, much of their capabilities are over-shadowed by polygons given that most, if not all 
hardware acceleration is oriented toward polygon engines (Silverman, 2000).  Although the 
marching cubes (Lorenson and Cline, 1987) algorithm does offer a method of converting voxels 
back into polygon data but this can be a slow and meaningless process should you not require 
polygon information for any reason other than display.

  Voxels offer a very dynamic method of storing volumetric data, meaning it’s very easy to alter 
the structure of an object at any time.  Ken Silverman, author of the Voxlap engine gave this 
example in an interview:

[With voxel maps,] unlike polygons, it's very easy to modify the map, for example, you can shoot 
a rocket at a wall, and you can explode a sphere (or any shape) out of it and have it part of the 
permanent board map.

Ken Silverman interview by 'Cyborg' (2000)

 
 The Voxlap engine itself is an example of a fast real-time method of rendering a voxel map and 
is available from Ken’s website (Silverman, 2000). 

  With regards to this project, a voxel map could be useful.  If I could create voxels inside a given 
piece of geometry, I would then, in theory, be able to colour any point in that volume as I wanted 
it, creating patterns inside it – exactly the final result I was after.

  However in practice, it is not this simple.  In order to define a voxel map of the inside of a 
geometric volume, I would need to know exactly where in the inside of a shape starts and where 
it ends.  Also, it would lead to complications in working out where a stored voxel was in relation 
to others as there would be no uniform number of voxels per row or column inside an irregular 
piece of geometry.
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   Instead then, I chose to create a voxel map inside a shapes bounding box (the box specified by 
taking the maximum and minimum points of a mesh’s geometry).  In this uniform space I 
generated voxel map of a given resolution which encompassed the given geometry.  In this 
space, it was far easier to move between adjacent voxels in all directions, making plotting a 
pattern in space far easier.   Any point specified in Euclidian space could be transferred easily to 
voxel space (integer values of width, height and depth in the voxel map of the voxel which 
contains the Euclidian point) through simple multiplication:

VoxelIndex.w = (EucPoint.x / VS.x) * VR.x
VoxelIndex.h = (EucPoint.y / VS.y) * VR.y
VoxelIndex.d = (EucPoint.z / VS.z) * VR.z

  Where:
- The voxel map indexing system starts from the front bottom left
- VS is the size of the voxel map in Euclidean space (the size of the bounding box 

around the geometry) in x, y and z
- VR is the resolution of the voxel map in x, y and z

  Of course, this solution didn’t have any concept of whether a voxel was actually inside the 
geometry it was given or not; a problem that is addressed later in this report.

  One of the problems of using a voxel map is that it requires an incredibly large amount of 
storage in memory.  My initial experiments with a voxel map with a resolution of 500x500x500 
voxels were taking up around about 1Gb in RAM whilst running.   Given that I had asked this 
system to store 125,000,000 voxels, each containing 4 numeric RGBA values, it is 
understandable. However, if I chose to lower the resolution of the voxel map it would greatly 
reduce the final quality of any render in my system.

  To work around this, I looked into fast and efficient forms of memory management for this scale 
of data and analysed how much information I actually needed to store.  Looking at the structure 
of a voxel map, it became clearer what was unnecessary storage:

- A voxel did not have to store a colour value unless it was actually used
- A voxel could re-use the same colour value of another voxel should they be the same 

colour
- The only thing unique to a voxel is it’s position in a voxel map

   In my program, I moved to making a voxel storable if and only if its colour had been explicitly 
set.  One of the obvious forms of data structure for holding this information when it had been set 
was that of a binary tree.  In such a tree, when using a voxels position as the sorting device, fast 
storage and access of voxel data became possible.  To further improve the efficiency of this 
system, I went on to research and implement a balanced AVL tree after reading over code made 
available by Brad Appleton (Appleton, 1989).

Fig 3. Left, an unbalanced binary tree and right, an AVL tree. (AVL Tree – Wikipedia, 2008)
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  With a feasible storage mechanism for a voxel map, I essentially had a blank three dimensional 
canvas around any given target geometry in which I could paint a pattern, such as a fractal.  This 
though, was only half of the voxel map development.  Having stored this information, I then 
needed a method of extracting the colours held within it and projecting them onto a two 
dimensional canvas which the viewer could see. 

  One such process is known as ray marching (Computer Graphics Lab of the Unversity of 
Waterloo, 1998) – for every pixel on the final 2D image plane, a ray (or several rays) is cast from 
the virtual camera through the point on the 2D plane and into 3D space. At set intervals along 
this ray, the current colour value of the voxel map (if inside one) is collected and accumulated.  If 
the accumulated colour value has reached an opaque opacity or the ray has marched down a pre 
set number of iterations, the final colour value is returned.  

  For this, I had to devise my own virtual camera and method of projection.  The reason behind 
this, rather than using existing solutions such as DirectX or openGL is that such systems are very 
orientated towards the use of polygons.  When trying to avoid the use of polygons, their use 
becomes more loss than gain.  Thankfully, the creation of my virtual world was largely managed 
with direct implementations of the maths described in Peter Comninos’ Mathematical and 
Computer Programming Techniques for Computer Graphics (2005), which describes the 
necessary functions in detail, and some simpler illustrative help from CodeGuru (Joe Farrell, 
2005).

  In my ray marching system, the step between each ray sample is set to be a fraction of the 
width of a voxel (by default ½), meaning a useful number of samples is always obtained when 
marching through a voxel map.  This does assume however, that there is only one voxel map 
present in the scene.  At each step along a ray, this same fraction of a voxel is added to the final 
colour.  By decreasing this fraction to a smaller number, it is possible to vary the detail gained 
from marching through a voxel map at a cost to the final render time.  In addition to this, I also 
added a couple of supposedly time saving devices to what is a fairly slow process.

  Rather than trace a ray for every pixel in the final image, I first project the co-ordinates of the 
voxel map bounding box to the screen.  By taking the maximum and minimum bounding pixels, I 
reduced the amount of rays to be marched along significantly when rendering a voxel map that 
does not escape the screen edges.

Fig 4. Illustrating how many pixels are traced given a target voxel map

Secondly, by making use of a ray tracer I wrote (details of which are found later on), I first ray 
trace rays through the image plane rather than ray march.  A ray that collides with the bounding 
box of a voxel map will return two points in space – one entrance and one exit.  By marching 
between these two points, I avoid having to march arbitrarily on until a maximum number of 
useless steps down a ray are performed.   One of the criticisms of this is that doing this ray 
tracing may take longer than ray marching but given the relatively short processing time this 
takes, I have left it in the final implementation of my renderer.
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  With such voxel system in place and able to store and display its information, I started looking 
into how to fill it with the fractal patterns I wanted.

Fig 5. A 103 voxel cube in a 303 voxel map

3. The Creation of Fractal Patterns

3.1. Introduction to Fractals
  'Fractal’ was a term originally defined by Benoît Mandelbrot as “a rough or fragmented 
geometric shape that can be subdivided into parts, each of which is (at least approximately) a 
reduced-size copy of the whole” in his book The Fractal Geometry of Nature (1982).  Mandelbrot 
himself was known as ‘The Father of Fractals’ (Yale Bulletin, 2003) and is most renowned for his 
creation of the Mandelbrot Set.  This set, is one of two very common sets within fractal art 
generation. The second, the Julia was derived by Gaston Julia.

Fig 6. Mandelbrot and Julia sets. (Wikimedia Commons, 2008)

  As suggested by his the book titles, Mandelbrot also studied the use of fractal algorithm’s in 
regards to quite a diverse range of things such as it’s appearance in nature (Mandelbrot, 1982) 
and in financial market systems (Mandelbrot, 2005).  Given this broad range of application, it’s 
possible to see how the term ‘fractal’ can be applied to a quite variety of sub categories. Some of 
the mathematical functions that fall into a fractal classification include - L-Systems, flame 
fractals, fractal terrain, Iterated Function Systems (IFS), attractors or the iteration of complex 
polynomials.  For most of my research, I stayed away from the creation of L-Systems and fractal 
terrain for reasons stated in my introduction and chose to focus on the other listed forms of 
fractal.
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  Fractal function ‘sets’ tend to fall into one or more of these categories (dependent on the 
implementation).  

  IFS’ or Iterated Function Systems are often used to create this style of recursive fractals given 
that the resulting fractal object will always be self similar at an ever decreasing or increasing 
scale.  Two prevalent examples of these would be, in 2D, the   Sierpinski Triangle (Sierpiński, 
1915) and in 3D, the Menger Sponge (Menger, 1926).  The recursive nature of this definition of 
fractals makes defining them in Euclidian space (i.e. the space in which any target geometry will 
be defined) more difficult. At the very least, limiting the depth of recursion would be necessary.

Fig 7. The Menger Sponge (Wikimeda Commons, 2008)

  Some of the fractal function sets that got me interested in this area of research originally were 
based on this IFS structure. The fractal flame algorithm by Scott Draves (2003) created some 
incredibly beautiful imagery and forms the basis for much of the fractal art created today.  Since 
it’s creation in 1992, fractal flames have been implemented as part of larger packages such as 
the open source image editor, The GIMP (Draves - website, 2005).  Draves’ work as a VJ (Video 
Jockey) meant much of his work was geared to be beautiful imagery over beautiful mathematics. 
This lead to a visual style of ghostly lines unlike those seen in previous fractal renders using 
other function sets.  It was this style of imagery that had first inspired me and that I wanted to 
use in my software, but using it did raise several problem.

3.2.  What I was Looking For
   For my software, I was looking for something specific from my fractal research.  My primary aim 
was to be able to render geometry with Drave’s fractal flame style patterns filling its volume. 
This meant, whilst trying to emulate the style of fractal flames, I also needed to fill some 
practical criteria:

- The pattern must be three dimensional in order to allow clipping to 3D geometry.
-  If using a recursive system, there must be a pre-defined limit to the depth of 

recursion.
- The pattern must allow the constructive use of colour (i.e. not randomly coloured)

  Initially, I envisioned my program making use of some or all of the fractal flame function sets. 
However, after reading up on how they are created, I discovered it would not be quite so 
straightforward.  Originally my perception of these flames is that they were constructed in 3D. 
However, all of the functions used are strictly two dimensional but manage to give the illusion of 
depth.  This meant unless I attempted to redesign some of these functions to work in 3D, I’d be 
unable to convincingly clip them to three dimensional geometry.  This was also true of other 
function sets like Mandelbrot and Julia.  It seemed that without creating my own IFS functions to 
approximate the look and style of fractal flames, I was unlikely to be able to use these simple 
functions.  Through my research around fractals, however, I found examples of other methods of 
generating patterns, of which some display fractal qualities.  
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3.3.  Attractors
  Attractors do not always conform to the definition of a fractal object, but they do share a lot in 
common with them.  Attractors are a function set in which a dynamic system evolves over a long 
enough time (Attractor – Wikipedia, 2008).  Some of these attractors, such as Lorenz (Lorenz, 
1963) which have a fractal structure are described as ‘strange attractors’ which describe a 
chaotic dynamic trajectory in the attractor.  Such attractors are strongly linked with research into 
chaos theory (non-linear dynamic systems).  For the scope of this project however, I will be 
focusing on their use in creating visuals.

Fig 8. A lorenz attractor (Wikimedia, 2008)

  In essence, an attractor is a mathematical function which when iterated repeatedly may yield a 
set of two or three dimensional points in an orbit around a point in a pattern not too dissimilar in 
style to a fractal flame. These functions are computed in the form:

Pxn+1 = f(Pxn)

Py
n+1

 = f(Py
n
)

Pzn+1 = f(Pzn)

  Where the attractor function f makes use of a number of preset parameters. Small changes in 
these parameters can make huge changes to the final outcome of the attractor.  In my software, 
I’ve attempted to put this to good effect; allowing an attractor to be animated by altering it’s 
parameters over time.  However, in some cases the next successive point in an attractor may 
break its orbit and all successive points disappear towards infinity. This makes using them fairly 
experimental and often reliant on trial and error. 

Despite this, I recognised the potential of these attractors in what I wanted to do, particularly if I 
chose to implement the ‘safer’ function sets – those unlikely to allow a point to escape the orbit 
of an attractor.  

  There are quite a number of different attractor functions in both 2D and 3D form.  My main 
resource for the implementation of these different attractors was an online manual of the 
software Chaoscope (2007).   This software provides a platform for experimenting with a variety 
of different attractors and their parameters, enabling users to find a multitude of viable solutions 
(where the orbit is maintained) and a means to render them as a high quality image. 

Fig 9. Example attractors rendered using Chaosope (2007)
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  Initially in my program, I chose to use some of the simpler attractors – those that were easiest 
to implement and easiest to alter whilst still producing viable solutions.  Two of the most useful in 
testing and development were those derived by Lorenz – the Lorenz and Lorenz84 attractors. 
Both of these attractors offered very simple and light equations that were easily recognisable 
when correct given the level of documentation on them available.

  One of the other noteworthy additions to the attractors available in my program was the 
Pickover attractor, as derived by Clifford Pickover and illustrated in Computers, Pattern, Chaos 
and Beauty (1991).  This attractor uses trigonometric functions, trapping any output point in 
sinusoids (the scope of a cos and sin waves, from -1 to 1).  This means this particular attractor 
does not allow points to escape orbit (although it  will still to collapse to only a few recurring 
points on some parameter combinations).  This makes this attractor much more flexible to 
experiment with when animating or searching for new parameter combinations. 

Fig 10. A Pickover Attractor (Pickover, 1991 pg 164)

  Appendix B contains a full list of the other available attractors and their mathematical functions.

  When implementing my pattern creator in my program, I realised there was another hurdle to 
overcome. Often one of these attractors would be much greater in size than the original 
geometry and therefore extend beyond the borders of the voxel map around it.  In order to scale 
down the points of an attractor, I first had to iterate once over the points in the attractor and 
map the minimum and maximum bounding points; after that, I could accurately scale down the 
attractor on a second iteration and whilst doing so, plot colour points from it inside my voxel map 
space.  This unfortunately meant I was looping over my attractor twice the amount of the given 
iterations.  In hindsight, I recognise I may well have been able to use fewer sample points on the 
first instance to get a rough idea of a scaling ratio, rather than a precise one.  One of the side 
effects of this, though, was that when rendering multiple frames of an animated attractor, the 
scaling ratio and translation of the attractor would differ resulting in jumping and flicking 
between frames.  For this reason, scaling in this manner has become a user choice rather than an 
assumption.  In order to help with the scaling process and allow smooth animation,  my 
application instead now reports back the ideal scale and translation to fit a pattern inside the 
designated voxel map when rendering a frame.  A user can then choose whether to use this 
information by using the 'patternTransform' command (Appendix A).

  A similar process to this was again used in applying colours.
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3.4.  Applying Colour
    With a good knowledge of methods on how to generate points in a pattern, I also had to 
address the problem of what colour to set this point in my voxel map.  Paul Bourke of  the 
University of Western Australia outlines three plausible methods for doing this (Bourke, 1999). 
An attractor can either be shaded by time, by curvature or by speed.  

  Shading by time simply uses changes the colour of a point dependent on how far through the 
iteration of the attractor this point is.  The result of which, given the repetative looping nature of 
attractors is a seemingly random noise effect of colour. 

  Alternatively, by taking the cross product of two vectors (one to the point previous to the 
current and one to the next) an attractor can be successfully coloured by curvature.  However, 
this requires much more information an assumes that both the next and previous points are 
always known.  The only method of using the next point in the attractor would be to either pre-
compute all points all and store them (requiring a large amount of memory) or to re-compute the 
next point on each iteration as well as the current point (a very wasteful and time consuming 
processing task).
  The final and most plausible solution is colouring by speed.  By taking the distance between the 
last point and the current point being set, it's possible to add colour dependent on the current 
velocity.  In such a system as this, the minimum and maximum speeds of an attractor must 
either be pre-defined by the user or pre-calculated.  Given that I was already repeating through 
an attractor twice to gain scaling ratio, I chose to pre-compute the colour in this step.  This allows 
the user to define two (RGBA) colours for minimum and maximum speed which would always be 
fully interpolated between dependent on velocity.  

Fig 11. and 12. My coloured attractors. Left, Lorenz84 and right, Lorenz84 with Pickover

  One of the possible changes I would make to this project is caused by this interpolation.  Given 
that I chose to store colours in RGBA format, linear interpolation causes colours to get darker 
while not at one extreme or the other.  Had I chosen to use the HSV (Hue, Saturation and Value) 
model of colour representation, I could easily interpolate between colours without this loss of 
vibrancy and, in so doing, produce a clearer final portrayal of the pattern.

  As a final task in colouring my attractors, I required a method of ensuring that I would always 
extract the broadest possible colour range out of my final image.  By setting all values from an 
attractor at a very small opacity (0.0001%), I could be reasonably sure no one voxel would ever 
be 'maxed out' (at RGBA values beyond 255, 255, 255, 1.0) and unable to add any more colour to 
itself.  When retrieving these colours to the final image, the maximum and minimum colour 
values could be found and scaled to ensure the broadest range of colour and shade.  This would, 
however, make darkest point in the pattern near black and the lightest point a very saturated 
colour.  To aid in this, I chose to add clamping values for the minimum and maximum possible 
saturation (of 0.0 and 1.0 by default).  These values could be changed to shrink the range in 
which the final image was multiplied to.  Whilst this method doesn't yield the most striking result, 
it does lend itself to be easily manipulatable in image post processing.
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3.5.  Possible Expansions
  With these methods of pattern creation, I was able to approximate the appearance of a fractal-
flame within a 3D voxel map.  With this area of research though, I felt I could have taken it much 
further and involved more methods of pattern creation in my system. 
  One of the features Draves' functions offered was the possibility of blending between the 
different functions to produce much broader range of visual results.  In some of my earlier, and 
unfortunately lost, experiments I had attempted to do something similar with attractors but this 
only seemed to result in clouds of points rather than any visible pattern.  Perhaps, though, my 
mistake was in ruling out Draves' equations on the basis they were two dimensional.  Having 
seen how simple some of the attractors functions were, and how some, such as Pickover rather 
neglected the z value in their functions (Appendix B), it may have been quite possible to adapt 
Draves' equations to 3D. In so doing I may have made blending a possibility as well as ruled out 
the problem of collapsing attractors.  
  Other possibilities for generating patterns were seen in the quaternion Julia set and work by 

Julien Sprott.  The quaternion Julia set takes the original 2D Julia set to a 4D one.  This 4th 

dimension gives yet another range of possible results for this fractal pattern, as outlined by 
Bourke (2001).  Julien Sprott shared an absolute wealth of possible attractors in many 
combinations in his book 'Strange Attractors: Creating Patterns in Chaos' (2000).   Sprott's 
attractors use a polynomial form of equation allowing him to easily blend and multiply these 
functions together – as shown in the book.  This creates an incredibly complex and broad range 
of possible attractors in both 2D and 3D, many of which would work well in my system.

Fig 13. Variants of the quaternion Julia set (Bourke, 2001)

  Lastly, since I was pursuing a visual style more than specific fractal methods. I would've liked 
the opportunity to branch out and create my own patterns.  One such possibility would be simple 
interpolating between the loaded geometry to produce a curve or line, along which I would be 
able to use whichever IFS functions I chose to define myself or recycle from other sources.  By 
using the geometry itself as a parameter, I may well have created further interesting results.

4. Defining Geometry, ’Inside’ and ‘Outside’

4.1.  Simple Geometry
  In order to be able to clip the patterns I was able to generate to 3D geometry, I required a way 
of loading and storing this polygon information.  By basing my method of storage on that found 
in Maya’s API (2008), I was able to easily define what a geometric shape would be inside my 
system; vertices of an object are stored in the order they are defined, faces of an object 
reference the vertices by the index in number of which they were stored.  This also lead to me 
using a similar exporting/importing technique to the Wavefront .obj file format (obj - Wikipedia) 
but ignoring most of the functionality (since I was not concerned with a surface but volume, UV’s 
and normal information was all surplus).

  With this information, I was able to load geometric data, compute the necessary bounding box 
volume around it and populate that bounding volume with a voxel map.  To ensure the successful 
loading of the entire object, I also mapped the vertices into the voxel space which encompassed 
it – highlighting the appropriate vertex voxels red.  This functionality is still available, but only 
within the source code.
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4.2  Inside and Outside
  Unfortunately, when dealing with polygons there is no easily recognisable way of differentiating 
between the inside or outside of an object.  This problem is directly related to the 'point in 
polygon' problem illustrated as long ago as 1974 by Ivan Sutherland (1974), though in this 
instance, we are using each polygon face in the geometry rather than an edge of a single 
polygon.

  The most common form of solving the point in polygon problem is to trace a ray in any arbitrary 
direction and count the number of intersections with, in this case, the polygon surface. If there 
are an odd number of intersections with the faces of the polygonal mesh, the point lies inside the 
volume.  This is by far the simplest form of inside/outside test and hence the one I chose to 
implement.  Looking at other possibilities for solving the same problem, most seem to encounter 
difficulties with efficiency.  For example, one idea I had was to take the normal of the nearest 
polygon face and determine whether the point lay on the positive or negative side of this plane. 
This sounded reasonable but actually trying to compute the nearest polygon to the point is 
potentially very intensive.  Instead, I stuck with this simpler method with a mind to improve its 
efficiency at a later date.  One of the major refinements I had hoped to use was to plot the 
central positions of each face into a an octree (as illustrated by Octree – Wikipedia, 2008) and 
therefore, when tracing a point, would be able to arbitrarily dismiss any faces that do not lie 
directly along a vector in the X direction.

In order to do this method of testing, I required a ray tracer to go with my polygonal mesh.  This 
ray tracing process is broken down into the following steps:

- A ray is defined as having a start point and a direction
- For every triangle in every polygon in the mesh, a plane equation is derived in the 

form ax + by + cz + d = 0
- If the ray and plane are not parallel, a point of intersection between the ray is 

computed using the above equation.
- The triangle vertices are flattened to two dimensions (UV space) by ruling out one axis 

coordinate
- The number of intersections with an edge of this triangle and a ray, defined by the 

point of intersection and the direction of the U axis, is calculated. If an odd number is 
returned, the ray has hit this triangle.

  The above algorithm is clearly outlined and its implementation described in a Siggraph tutorial 
at (Owen, 1999).   Using this, I was able to write a basic and vaguely efficient ray tracer that sat 
with my mesh definition, able to trace a given ray against itself and return the required 
information (see source files, JMesh.h).  

  Using this ray tracer, I was able to determine whether or not a voxel colour should be set 
dependent on if it was inside or outside of a mesh shape by tracing a point from the center of the 
target voxel across in the direction of the X axis.  Since my rudimentary ray tracer checks both 
directions on the ray, I could be sure an accurate number of intersections would be returned 
regardless of the X coordinate of the point in space.  However, this method always assumes it is 
working with a closed volume.  This is one of the limitations of my implementation, but one I 
accept considering the complexities of trying to define the inside or outside of an unclosed 
volume.  For efficiency’s sake, I also built an inside/outside flag into my voxels to avoid 
pointlessly checking a voxel repeatedly to see if it was inside the same volume. 

  This functionality, combined with that outlined earlier, gave me all of the essential parts of a 
functional, pattern clipping renderer.
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Fig 14. Lorenz84 clipped to a cone and Fig 15. Voxel clipping of the Stanford Bunny (www.stanford.edu)

Fig 16. Clipping to a cube

Fig 17. Clipping to the Stanford Bunny
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5.  Functionality and Usability

5.1.  Writing Images
  With most of the core functionality of my program in place, I needed to make it perform like a 
true renderer. In development, I had been relying heavily on wxWidgets (wxWidgets, 1992), a 
multi-platform user interface tool which allowed me to ensure my program worked on both Linux 
and Windows based machines.  Whilst testing, my program had simply been drawing the final 
pixel data on the screen. To turn this into a renderer capable of outputting final images, I simply 
had to redirect this pixel data into a recognised file format.  Within wxWidgets are the capabilities 
to write out images in various file formats.  After employing these capabilities, to not make the 
original windowed program obsolete, I altered the display to show only the last frame 
successfully rendered. 

5.2. Making it Usable
  In order to easily change what my program rendered I needed a method by which I could set a 
great deal of variables quickly and easily.   Rather than attempt to construct a full user interface 
for my program, I chose to simply use a command line given file as my input.  Whilst this gave 
me the functionality I needed, it meant I was free to spend more time pursuing the main aim of 
this project.  
  To do this, I created my own simple ASCII based file format, a ‘.fs’ (fractal settings) file which my 
program was able to recognise and read certain commands and values.  In order to quickly 
construct these files, I wrote a separate Mel script for use in Maya which exports any selected 
geometry and a few pre-sets (Appendix D).  This script was very rudimentary but managed to 
perform the tasks for testing and creating different outputs in my renderer.  With further 
development, I had hoped to create a small user interface for this script in Maya and present to 
make my program far easier to understand and manipulate.  Currently, this script doesn't 
properly capture Maya's camera settings.

A full breakdown of the commands recognised in the .fs file format is found in Appendix A.

5.3. Threading
  When I undertook this project, I had envisioned being able to render out animations of its final 
results.  Whilst this was not part of what I had originally outlined in my brief, I felt that the impact 
of an animated solution would outweigh that of developing further patterns or optimisation within 
a static one.  My initial renders were being completed in times of 1-3 minutes after the full 
process of pattern generation, clipping, ray marching and image writing.  By learning how to 
thread my application, I was able to render multiple images simultaneously.  Through use of the 
wxWidgets threading abilities, I was outputting as many images as there were cores on a 
computer in the same time it was originally taking to do one.
  One of the side effects of threading in this way, however, is that passing information between 
rendered frames becomes problematic.  Information which is worked out on a per-frame basis 
could, in theory, be successfully passed to successive frames for re-use.  Sharing such 
information would have greatly enhanced the performance of my renderer.
  I should also point out a recent over-sight of mine when running multiple threads in my current 
implementation; Threads may conflict when trying to re-use pattern data unless a separate 
pattern is specified on every single frame.
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6. Failures, Successes and Refinement
  

  As a finished piece of software, I have managed to produce the effect I set out to at the start of 
the project.  I do indeed have a renderer that takes a piece of geometry and clips a fractal-flame 
style pattern inside of it.  Yet within this project, I can see a lot of room for refinement and 
modification to achieve a better result, some of which are mentioned beforehand.  As well as this 
simple improvements such as the way in which a user is able interact with my renderer or easy 
speed optimisations would’ve gone a long way.

  As a project, one of my regrets is delving straight into the development of a voxel renderer as 
the viable solution.  Whilst I’ve managed to utilise voxels and get a respectable result from them, 
it’s possible to argue their position in the project to begin with.  Whilst I used voxels to store and 
recall image data in a 3D format, this was rather obsolete given the method in which I create 
patterns.  Surely, if my patterns are created as points in Euclidean 3D space, I would be able to 
simply map a colour point at this value directly to the corresponding pixel on the screen. Such a 
system would greatly improve the quality and ‘smoothness’ of a final render of these volumetric 
patterns; Not only is marching through a voxel map a fairly intensive process, but detail is likely 
to be missed and passed over, particularly when using larger ray step sizes.
  Of course, had I removed the voxel map completely, I would be left with an extremely large 
number of points from which to ray trace against a polygonal mesh to find out if it was inside or 
outside.  In my tests, I was plotting 5,000,000 points per attractor.  To ray trace this many times 
would be incredibly time consuming.

  To that end, I would argue voxels do have their place in a system such as this by using them to 
define inside and outside positions of a mesh.  In so doing, I would be able to ray trace once per 
voxel, as the current implementation does, but use that only as a guide to whether a colour value 
should be projected to the image plane.  Each subsequent pattern point that fell in the same 
voxel could then be quickly labeled as inside or outside the mesh volume.  Also, if such 
information was then stored in a BSP octree, rather than an AVL tree, I would have a fast and 
efficient method of checking a point against a mesh.  Similarly, I could also clip this against the 
viewing frustum to further reduce the amount of needed ray tracing. 

  This criticism would be different had my system made full use of the voxel map data.  With the 
information stored in a voxel map, it would be perfectly feasible to start passing the voxel map 
between frames in which either the pattern data or mesh data remained constant.  It would 
always be easier to pass this data than re-compute it on another frame (something that would be 
particularly apt if attempting to build a real time system rather than an offline renderer).  At one 
point I had considered implementing a version of this but found it became incredibly complicated 
when it came to threading; more often than not threads would need to access the same voxel 
map and organising and cloning these maps in memory would’ve taken more development time 
than I had remaining.

  Whilst I’m glad I managed to use voxels successfully and to a good result, having now learnt 
more about their capabilities, I feel I did not use them for their most efficient purposes and that 
pursuing this system was detrimental to other areas of research, particularly the development of 
additional patterns and user interface.
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  Another minor downside to my system is its inability to process a polygon of more than 4 
vertices.  I did this largely because of my ray tracer and it’s method of selecting triangles within 
a face to trace against.  If a polygon had a greater number than 4 vertices, there was a good 
chance my simple ray tracer would ignore a hole in the center of the polygon.  Another reason 
was that it made reading in a polygon of an arbitary number of vertices more difficult. By 
explicitly saying a polygon must be of 3 or 4 vertices, I side stepped the problem.  So as a 
general note, for efficient render ring, a triangulated mesh is best.

Fig 18. In a 6 sided polygon, my system will only define the blue triangles as part of the face.

  A slightly more annoying trait in my renderer is that, since my virtual camera uses an aim point, 
it requires a default up vector.  Without the addition of a way of altering this up vector from the 
default [0, 1, 0] a camera looking directly up or down breaks down and returns a black image. 
Similarly, whilst my camera settings allow near and far clipping planes, these are not strictly 
honoured by the voxel rendering method.  Only if the entire voxel map is past one of these 
borders will it be removed from rendering.  To take more time to implement this feature properly 
would have been simple and beneficial.

  Some post processing of the final image could also aid the final outcome of this renderer; 
particularly gamma correction for displaying on CRT monitors, as addressed by Draves in his 
paper 'The Fractal Flame Algorithm' (Draves, 2003 pg 10), or motion blur to smooth out the 
movement of a fractal over time are both viable additions.

  These points and refinements aside, I am very pleased with the results from this project.  I have 
managed to successfully produce and clip fractal-flame like patterns in a three dimensional 
environment with decent results.  Visually, I expected to be able to see a representation of the 
geometry a little clearer than I have currently been able to manage. However, I believe this is 
largely to do with a lack of efficient test of my application in order to retrieve the best results out 
of it.  Had I had better time management skills, I may have been able to give further examples 
that I am certain this software is capable of.

  I believe this project forms the basis for a lot of experimentation I wish to attempt later; 
Experimentation that will encorporate the valueable lessons learned from how this project could 
have been improved and the degree to which this method of rendering could potentially be 
taken.

  A list of all included source files and their purpose in my program can be found in Appendix C
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8. Appendix

8.1. Appendix A – FS File Format Commands
An example – example.fs is included

Command Purpose

Global
outDir <string> Sets the out directory for output files
filename <string> Sets the file prefix for output files
/frameStart Starts a new frame.
/frameEnd Ends this frame description

Frame (for use within /frameStart and /frameEnd)
voxmap <int> <int> <int> Use a voxel map of this resolution
transform <float>x16 Transform the voxel map by the given matrix 

(used to translate to the objects transform 
co-ordinates)

cameraPostion <int>x6 Set the virtual camera position where the 
first 3 numbers give the camera translation 
and the last 3 give a point to aim the camera 
toward

cameraAspect <float> <float> Set the camera aspect ratio
setCameraFOV <float> Set the camera Field of View angle
setCameraClip <float near> <float far> Set the camera clipping planes
setClamp <float low> <float hi> Clamp the minimum and maximum opacity 

levels in the final image from 0.0-1.0
resolution <int width> <int height> Set the output image size
/objectStart Start a new object description
/objectEnd End object description
/patternStart Start a new pattern description
/patternEnd End a new pattern description

Object (for use within /objectStart and /objectEnd)
v <float x> <float y> <float z> Specify new vertex at x,y,z
f  <int> <int> <int> <optional int> Specify a new face in the shape with 3 or 4 

vertex’s where the integers are indexes to 
the vertices (vertices are stored in the order 
they are entered)

Pattern (for use within /patternStart and /patternEnd)
wipe Scraps any pattern data copied from 

previous frames
patternRescale <int> Scale this pattern set to the size of the voxel 

map. 1 = on, 0 = off
patternTransform <float> x 16 Transform this pattern set by the given 

matrix. Performed after rescale.
setSpeedColour <float> x 8 Where the 8 numbers represent 2 RGBA 

colours in order, the first representing the 
slowest speed colour, the second the fastest 
speed colour

lorenz <int n> <optional float> x 4 Specify a Lorenz attractor iterated over n 
number of times. 4 optional parameters to 
differ from default settings. If one parameter 
is set, all must be. This is true for all 
attractors.

lorenz84 <int n> <optional float> x 5 Specify a Lorenz84 attractor.  5 optional 
parameters to differ from default settings.

pickover <int n> <optional float> x 4 Specify a Pickover attractor.  4 optional 
parameters to differ from default settings.

polyA <int n> <optional float> x 3 Specify a polynomial type A attractor. 3 
optional parameters to differ from default 
settings.

polyB <int n> <optional float> x 6 Specify a polynomial type B attractor . 
Current disabled.

polyC <int n> <optional float> x 18 Specify a polynomial type C. 18 optional 
parameters to differ from default settings.
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8.2. Appendix B – Included Attractors and Equations

Lorenz

  Default Parameters: a = 28, b = 46.92, c = 4, h = 0.01

Lorenz 84

  Default Parameters: a = 1.111,  b = 1.479,  f = 4.494, g = 0.44, h = 0.135

Pickover

  Default Parameters: a = -0.759494, b = 2.449367, c = 1.253165, d = 1.5

Polynomial Type A

  Default Parameters: p0 = 1.586,  p1 = 1.124, p2 = 0.281

Polynomial Type B

 Default Parameters: p0= -0.237, p1 = 0.453, p2 = 0.486, p3= 0.616, p4 = 0.141, p5 = 0.483

Polynomial Type C

  Default parameters in patternDescriptor.h

Equations courtesy of Chaoscope.
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8.3. Appendix C – Overview of Source Code Files and Functions

mainApp.h
  Defines a wxWidgets application object of a wxWidgets application
main.cpp 
 Creates and initialises the application.

myFrame.h 
  Defines the main frame of the application interface
myFrame.cpp
  Initializes the frame and manages the rendering process. This creates and starts the render 
threads and writes images to files when they are found to be completed.

renderThread.h / renderThread.cpp
  Defines and initalises the rendering threads and performs the computation of a frame image.

myCanvas.h /   myCanvas.cpp  
  Defines a wxWidgets frame that sits within the main frame of the application.  It is tasked to 
display the last completed image. This is updated by myFrame.

renderSettings.h / renderSettings.cpp
  Defines a storage class for reading in a .fs file.  This is created in main.cpp and attached to the 
input file.  The input file is processed resulting in an initialised render settings object with an 
array of ready to render frames.

renderFrame.h / renderFrame.cpp
  Defines a storage class for all render data necessary for this frame – The voxel map to be 
populated, the patterns (in the form of a pattern descriptor) to be used in it, geometry data, 
camera data, image width and height, the output file name and the output directory.

voxmap.h / voxmap.cpp
  Defines a class for storing and manipulating voxel data in a voxel map.  Geometry data is 
passed to this from the parenting renderFrame.

patternDescriptor.h
  Defines a class that holds a main pattern description class and derived classes for all available 
pattern types.  These descriptions hold individual pattern data for each pattern to be rendered. 
These also hold the default pattern parameters when they are not specified by the user.

pattern.h / pattern.cpp
  Defines a class that performs the drawing of patterns in a voxel map.  When the final image is 
requested from a renderFrame, the renderFrame attatches a pattern object to the voxel map it 
holds, then feeds the pattern object the patternDescriptors it holds. These are drawn and clipped 
against the voxel maps held geometry.

voxTree.h / voxTree.cpp
  Defines a storage class for an AVL tree of voxels.
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Data Types

JVoxel.h
  Defines a Voxel storage class. A pointer to these is held in a voxTree node. The voxmap handles 
the creation and destruction of voxels. Holds: R, G, B, A and boolean insideMesh/outSideMesh 
data.

JCanvasPixel.h
  Defines a storage class for colour detail for the final drawn image in the form: Window x, 
window y, R, G, B A.

JCamera.h / JCamera.cpp
  Defines a camera object. These perform the necessary projections to a 2D plane.

JMesh.h / JMesh.cpp
  Defines a mesh object capable of holding the necessary mesh data as well as tracing a given 
ray against itself.

JFace.h
  Defines a face storage class that is used by JMesh to store face data. Holds the integer index 
values corresponding to the array of vertices held in a JMesh object.

JVector.h / Jvector.cpp
  Defines a vector data storage and manipulation object. Based on Rob Batemans libMath 
version*.

Jmatrix.h / Jmatrix.cpp
  Defines a matrix storage and manipulation object. Also based on Rob Bateman's libMath 
version*.

JIntArray.h
  Defines a class that stores an array of integers. Used by JMesh on initialisation.

JVectorArray.h
  Defines a class that stores an array of JVectors. Used by JMesh on initialisation.

*LibMath available from http://www.robthebloke.org/

8.4. Appendix D – writeFS Mel Script

Please see writeFS.mel
Suitable for easy use with testScene.ma
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