MUSIC WITH INTERACTIVE VISUALS
Peter Ridgway u9707421

Innovations Report.

INNOVATIONS

A brief note…
To me an innovation can be taken two ways, Personally or globally. Whilst few innovations take the world by storm many are personal triumphs. I intend to complete a project that truly challenges me, this I feel is the truest innovation that I can capture.

INTRODUCTION:

1.1

“There has been little in the way of innovation in the combination of sight and sound since the Llumiar brothers!” (Unknown Internet Quote).

This is at first glance a bold, brash statement, but with further thought it does bare a certain truth. Today with powerful multi-tasking computers, new innovations are sure to happen! With many performance restrictions being lifted and advanced techniques being developed every year the ‘next big thing’ should be right around the corner?

Just for a moment imagine the visuals of Fantasia being produced to music, with direction by real-time human control. Could their be a way of producing visuals that responded to music and understand the mood of the piece, is it possible for computers to calculate this? At the moment I don’t think this can be so, unless extra data for the song was used that predefines the mood at a given point.

At present the best method would be for a hybrid system that allows a computer to define beats and timings with humans interactively controlling the mood. How would this be accomplished? What methods could be utilised to allow for a natural communication between machines and us?

This project centres on human interaction with music and the visuals that can be generated via their response to both. The aim in mind is to produce visuals that are controlled in part by music and has elements that can be altered in real time by a user. Such a system could find good use in large nightclubs that strive in offering the ‘next thing in entertainment’. Many clubs use huge projector screens with set visuals looped on them, Often images of the club itself are replayed with a few filters thrown over them. Whilst functional loops are soon noticed and the crowd knowing that they have no control lose interest.

What would it be like if the crowd were controlling visual by manipulating triggers that altered computer-generated imagery? This, with the aid of the music could prove extremely popular and add to the feeling of participation between the crowd and the environment that they are helping to produce. This is often lacking and is an area that shall probably experience vast growth within the next few years. Already arcade games are being released in Japan that involve performing dance moves to progress to the next level (more complex song).

1.2

Research:

In communicating with the system, 3 basic levels are defined. All need to be addressed in order for the system to work.

Level 1:
Inputs to the system (interaction), How the user interacts with the system and interface to the relevant programs.

Level 2:

Data manipulation, How the program reacts to the inputs.

Level 3:
Final output, The results of the program’s response and how this is reported the user.

Each level has different needs that must be accounted for in the previous (if any) level. Overlooking any of these needs will add to the complexity of the next level and decrease the performance.

LEVEL 1 – INPUT METHOD:

2.1
How to define the interaction:

What forms of communications would allow for maximum creative input to the computer? To achieve a greater freedom alternative methods for interactions with computers will be needed. Standard input devices, whilst functional would be inappropriate for the objective. To gain a greater level of interaction users must be ‘untied’ from the keyboard and be able to move around freely.

Methods for allowing this could include light beams that would be triggered by movement, motion capture or just motion pads located at different points on the body (recording speeds and angles only). All these would be excellent devices but, with the exemption of the light beam device, all are active detectors that require initial set-up and can’t be used instantaneously. This is where the ’light beams’ method is superior; anyone can interact without having to attach themselves to the device. Since music is the driving force of all the actions, detection of movements that are closely associated with music is essential.

Dance is one of the most common motions to music. It would be possible to have pressure pads that detect movement in quantified amounts, (by detecting where the feet are applying load). This method allows for a roaming ability and does not need set-up changes for different users. Simple devices such as security pressure pads could be used for this. They would be substantial enough to endure the impact of people landing on them and be easy to install. In practice a hard surface could be used, this would sit on a hard rubber base; micro switches could be used to detect the small change in the height of the top surface.

Such devices are already present for purchase. One such device is from a company called Foremed Europe (WWW.dancingedge.co.uk) who sell a PC game ‘Let’s Dance Europe’. It features a set of floor triggers that need to be pressed in a pre-defined order to progress to the next level of dance moves. Many reviewers have been kind to this game that is based upon a Japanese arcade machine, claiming that it’s good physical fun – a digital version of twister with music.

[image: image1.png]
LEVEL 2 - THE SOFTWARE:

3.1

Winamp Plugins, (Geist):

This in some respect can be classed as the definitive music driven visuals on a Windows operating systems. Using direct X and open GL, music of all descriptions can produce real-time abstract visuals. Most of these involve graphic equalisers that have transforms applied to them along with various effects; the results are extremely impressive.

Whilst there are other plugins for Winamp, Geist is regarded as one of the best. Due to winamp being shareware and its source code being made available to users, there are many examples on the Internet that cover a wide range in quality and approaches to the visuals.

[image: image2.png]
Visuals produced to music in winamp, colours are derived from the frequencies.

3.2

Media player 8 for Windows:

The latest version of Microsoft’s multimedia player now offers effects similar to Geist, but with a lack of depth when compared to the former. There is no doubt that some of the visuals are pleasing to the eye but, the motion and colours of the effects lack the aesthetic appeal of Geist. This is possibly due to the free ‘source code’ which has granted a ‘something for every one approach’. Media player 8 appears to be far more CPU intensive than its counterpart when running at the same resolution, this becomes less apparent at greater screen resolutions.

[image: image3.jpg]
Mediaplayer’s visualisation, this example’s only monotone and lacks true

Musical recognition.

3.3

Direct X:

This is Microsoft’s standard for windows 98 and later operating systems. It is primarily used for games and is conceived of various key elements. Direct Play, Direct input, Direct Sound etc. This allows for sounds visuals and inputs to be linked closely together. The lack of any true understanding and experience with Direct X rules it out for further investigation. Learning to program in it would require more time than is available. It has been included as a viable option only if the knowledge and experienced of coding in it had been gained.

3.4

Open GL:

The Open Graphics Language, Production of the visuals using this method would be fairly straightforward due to prior knowledge. With lots of useful references and code that can be adapted close at hand this seems like and idea solution at first.

The big problem concerning open GL is the inclusion of sound to drive the movement. This would involve extensive coding of music library’s and multi-threading processes that have not been previously looked into. This is initially a big disadvantage, but the processes should theoretically be ‘light’ on the machine, allowing for smooth and fluid graphics that offer a compensation for the initial programming hardship.

3.5

Maya:

Maya is included in this section as it’s the primary software that is available. Maya’s lack of real-time manipulation and sound sampling options create a major problem from the word ‘go’. If there was any method in Mel (Maya’s embedded Language) to extract data from a sound source, this would prove an extremely versatile method for producing pre-rendered sequences driven via Music/audio.

As it stands though, without linkage to other programs that can record inputs in real-time this option cannot interactively produce visuals to suit the initial concept. There is no clear way of producing visuals from music, other than hand keying motions and colours from a wave file that can be imported into the time line.
3.6

Houdini:

Houdini has the unique ability as an animation package to offer real-time animation and audio courtesy of CHOPS (channel operators). These can allow the use of sound to drive animation and modelling parameters in real-time. This remarkable technology has been used to good effect by a group who call themselves “ElKabongists”. These people travel around arranging interactive dance festivals using Houdini to power large projector screens around a dance floor.

This technology was demonstrated for the first time at siggraph 98, where six copies of Houdini on SGI Octains provided visuals for 6 independent screens. Dancers controlled part of the visuals via heat cameras joysticks and pressure pads. The input devices where connected to Houdini using a midi interface, all of the songs played where generated by midi sequenced files enabling easy frequency manipulation. Indeed all of the visuals where driven by midi, its ability to be quantified lends itself for the break down that was required at the event.

[image: image4.jpg]
One of the dance halls at IDC siggraph 98.

THE SYSTEM TO USE:

4.1
The method:

After the initial research and considerations to the task at hand the method for further investigation involves using Houdini. Its ability of real time input manipulation describes the essence of this project well. It is always advantageous to learn and understand new software packages and for a full solution to the idea it would be somewhat superficial to write a plugin for Winamp and have little or no interactive control over the visuals.

4.2
Elkabong: The deciding factor?

More reasons for the choice can be found at the Elkabong (www.Elkabong.com) website under the topic ‘story behind the IDC’ Here a talk from the Converging Worlds Conference, Toronto, February 1999 by Greg Hermanovic on the Interactive Dance Club is outlined. This is a very interesting page giving an insight to the motives that lead to the event and some of its repercussions. The main difference between IDC and this project is the lack of human audio production. It is not intended for the user to hear the sounds that they make only the audio tracks that are playing, unlike at IDC.

[image: image5.jpg]
A small ground pad set up at IDC.

[image: image6.jpg]
Some of the various interactive objects at IDC.

4.3
The various options:

Due to Houdini’s varied selection of audio filters and input options, time is needed to consider a method to pursue. There are 3 main types of input that constitute to control that have been derived from looking at the program. These are:

1.
midi signals.

2.
keyboard/standard inputs.

3.
frequency-generated/audio inputs.

Braking these three down in more detail is important! By understanding the principles of each, a better result shall be obtained due to time not being wasted in pursuit of methods that are inadequate.

MIDI:
4.4
What is midi? In brief…

Midi, (musical instrument digital interface). The important thing to realise about midi is that it is not sound information but performance data. Midi information describes the notes that were played and how they where played, not what it sounded like! Other information shared includes the volume and modulation of the note, if any.

MIDI can also trigger patches to be changed, master volume, modulation devices and even how to receive information. In more advanced uses, information can indicate the starting and stopping points of a song or the metric position within a song. Many applications involve using the interface between computers and synthesisers to edit and store sound information for the synthesiser on the computer, or sequencer.

(See appendix A for further midi descriptions)

Midi to an O2?

If midi is to be used how is it to be connected to the computer, The O2’s have no designated midi-ports on them. How can this be overcome? Is there indeed any form of workaround for this problem?

After much research a solution has been located between the Georgia Institute of Technology’s website and SGI’s website. Following is a brief overview of how to connect midi to an O2.

4.5

Why should midi connection prove to be a problem?

Electronic data communications between elements generally fall into two broad categories: Single ended and differential. O2’s use the single ended communication standard where most midi devices use the Differential standard. This is the ‘hiccup’ that needs to be dealt with. These two forms of communication whilst similar at a glance are directly incompatible.

Before pursuing this anymore these two formats need to be understood for a solution to be formed!

 The two standards:

RS-232 (single ended):

Introduced in 1962 the specification allows for data transmissions from one transmitter to one receiver at relatively slow data rates (up to 20K bits/second) and short distances (up to 50ft. @ the maximum data rate).

Independent channels are established for two-way (full-duplex) communications. Voltages, with respect to a system common (power/logical ground) represent RS-232 signals. “Idle” state has levels negative to common and “active” state incorporating positive levels with respect to the system common.

RS-422 (Differential data transmission):

When communicating at high data rates, or over long distances in real world environments, single-ended methods are often inadequate. Differential data transmission offers superior performance in most applications. Differential signals can help nullify the ground shifting effects and induced noise that can occur. This is the common for midi, where signal derogation is not tolerated due the fine signal levels.

4.6

Methods conversion:

Connecting Midi to the O2’s used is not as straight forward as it first seemed. The process is essentially the translation of one form of serial protocol (midi) to another (rs-232). Two ways for this conversion are:

1. Buy a device such as the “unwinder”.

The “unwinder” features as a kind of ‘plug in and play’ device and is purpose built for SGI’s. This device is available from “The play group”(www.theplaygroup.com) for and extensive cost.

2.
Create a custom cable to be used in conjunction with a standard midi converter. Preferably the midi converter should be a PC based device that communicates to the RS-422 standard. The converter should be a self-powered ‘non-parasitic’ device (it should not draw power from the serial port if you want to export midi signals from the O2).

4.7

Example for connecting midi to the O2’s:

Midi devices output on an RS-422 and the O2’s utilise the RS-232 format, so a converter will be needed. One such device is the Antona serial converter model #6090 (a non-parasitic Mac/PC converter). A cable will be required to connect to O2 to the converter box. This cable is a Male DB9 to a Male Mini8 Din. (Detailed in appendix B using the configuration for The Antona device).

Note: RS-422 is a powered protocol – that is, it will draw power from the O2 serial port in order to bring RS-232 to RS-422 line levels. If a ‘parasitic midi translator is used the O2 does not have the power specifications to send data out to the converter, their may be enough power to transmit to the O2, but the reverse is not true. For reliability purposes, a non- parasitic converter device should be used (a unit that can supply its own power source).

The O2 needs to know that serial port 2 (serial port 1 is usually reserved for terminals) is available for Midi. This is done Via the shell command: %startmidi –d/dev/ttyd2

The device should now be free for software to use, remember to select “serial port 2” from the midi menu in the synth program. Also a handy utility exists in the usr/share/src/dmedia/midi directories that will echo to the screen all midi messages passing between the devices.

4.8

Using a keyboard patch device:

This is the simplest option available and involves little in the way of technical knowledge. The effect is that of doubling up on selected keys from the keyboard. The method for doing this means opening up the keyboard and attaching wires to the connection points of the selected keys. These wires are then connected to external devices so that when depressed the effect is identical to depressing one of the keyboards natural keys. This method is reliable, easy and cheep yet it does come at a cost.

If the system were to be used in a practical environment where there was a necessity of utilising the keyboard problems would arise. In Houdini the keyboard must be ‘locked’ to allow real-time input for animation. This makes all other keyboard uses redundant. Also if mid session work needs to be done using the keyboard no form of isolation would be available. Ensuring that the input devices did not interfere with the keyboard operation would involve more hardware to cancel out all floor pad inputs; thus no interaction would be available.

 In short, this method will work will little or no overhead to performance but lacks certain features that are available in the other methods, it also provokes an inherent instability to the system that may prove fatal upon execution.

4.9

Frequency generation:

Frequency generation involves the use of wave detection in Houdini, thus isolating various frequencies. If input devices where connected to a simple frequency generator which then connected to the O2 via line or microphone inputs, filters could be used to detect the various input devices.

The circuit could be a simple 555 or 7555 timer with pressure pads controlling resistor connections. This method has the benefit of being cheap; the necessary components can be obtained from most electronic stores for a small cost. The frequencies that are generated can then be used as motion generators in Houdini, this avoids the overhead calculation of noise and frequency functions.

From only a few frequency inputs complex visuals could be created with the addition of the pads. The pads (if depresses simultaneously) could cause the generated wave forms to super impose themselves upon each other creating a wave that could be used in triggering secondary or special case visual functions.

The frequency box could be used on multiple systems easily with a simple y patch cable from its output. These could be utilised by several copies of Houdini running on separate machines. Each Houdini process could have different properties effected by the frequencies, thus 2 or more screens could be produced from on input generator. This is advantageous over Midi in that midi can only be linked to one output unless multiple through-passes are taken from each converter. This is due to the communication requirements of midi.

[image: image7.png]
How midi would have to be linked up to several converters to allow for multiple systems communication.

[image: image8.png]
How the frequency generator can be used for distribution on multiple machines.

As can be seen from the diagrams the frequency generator method is far simpler and more efficient than the midi connection. The construction of this method requires the use of the O2’s ‘line in’ sockets, This narrows down the available inputs for audio. Using the free microphone input is inappropriate for either the frequency generator or for the music. Since the O2’s come with CD-ROM drives they would seem a good option, along with pre recorded audio (Wav files).

 The generation of input frequencies, whilst lightening the load of the system inadvertently provokes a recall of the performance increase with the necessity to sample the input at a high enough rate to distinguish the frequencies. This sample rate would have to be quite high in order to obtain a steady and reliable controller source to be utilised in image manipulation.

4.10

Plug this in!

Due to the overly complex method required in connecting midi to the O2’s and the lack of a definite outcome midi is not to be perused beyond this point, of the other devices, building a frequency box seems to be the best solution.

As shown Midi is the preferred method of communication for the system with the keyboard patch device being the easiest yet worst approximation to a solution. For the integration with the O2’s the trade off between simplicity and functionality appears to be evenly waited in building a frequency generator. The impact in performance that will be incurred over Midi is a trade off that will allow for a simpler device connection.

With having to learn a new piece of software it possible that the visuals produced will not be that computationally intensive due to the simplistic creation and manipulation. The advanced functions will generally be avoided in favour of simple effective methods; the main emphasis is upon geometric shapes, simple motions and colours not the modelling, texturing and lighting of complex scenes. Hopefully this will be light and not be effected by the need for input sampling.

LEVEL 3 VISUALS:

5.1

Visual Styles:

Due to this being a real-time project I shall not be researching any traditionally animated pieces such as Oscar Fishinger or other such pioneering animators such as Len Lye. Whilst great appreciation is given to such people, primary concerns are centred on modern animations and music images. The artwork of music CD’s and posters also will not be investigated, as generally they are purely static in form. This is not to dismissing any of these but is a consideration into streamlining the research process allowing for more time to develop the visuals.

Many applications respond to musical stimuli in the context of their motions, colour’s and shapes. Following is a brief examination into what makes some visuals more relevant and pleasant than others. Most of this examination will be centred around winamps visualisations with a few examples from windows media player, this is due to the variance of designs and shear multitude of relivent effects that are produced in both packages.

Through out both these packages the visuals can be broken down in to 4 main groups. There are however crossover and exemptions to these ‘rules’ – this is unavoidable.

1.
Radial patterns.

2.
2d patterns.

4.
3d zooms.

5.
Particles.

5.2

2D Patterns:

These are combinations of horizontal and vertical frequency analysers. The analyser is projected in real time and blur effects are applied on a per frame basis. This blurring is dependent on the amplitude of the music at that point. (E.g. 1)

This form of visualisation is effective in that no beat detection is generally used yet, the viewer is forced into responding to the visuals by recognising the equaliser frequency wave, thus noticing the beats and motions in direct connection to the music that drives it. This appears to be the simplest form of visualisation due to the lack of beat detection, this is not to say that it is not effective though. The visuals are clear and not over complicated unlike 3d zooms. The response to quiet parts in the music generally works better due to the amplitude/ velocity being low.

[image: image9.jpg]
(E.g. 1): Picture taken from Microsoft’s media player visualisations.

5.3

3D Zooms:

These can get over complicated very quickly and in many cases do. Many don’t seem to follow the music other than in the terms of “on or off”. Most visualisations have tried to calculate beats off specific frequency amplitudes. (This is discussed later on) which has mixed effects. Initially main hit points are calculated well and amplitude increases are always punctuated. The down side is that fades and quiet sections can be under played at the beginning of the quieter sections, then when the programs ‘amplitude average’ catches up, the volume has risen again and now the visuals are being over loaded by bright and chaotic motions (E.g. 2).

[image: image10.jpg]
(E.g. 2) Picture taken from Winamp plugin ‘Geist’.

5.4

Radial patterns:

These are similar to some of the circle orientated 3d zooms. The basis is generally that of mapping the frequency analyser to the circumference of a circle or other object and projecting the resultant amplitudes out from the surface. The main difference between these and the 3d zoom patterns is the blurring/motion. In 3d zooms every thing appears to be falling into or away from the camera simulating vertigo, this is replace in radial patterns by 2d distortions. As the colours leave the centre they twist to produce a wave effect, similar to all the emitted points being attracted to an invisible sine wave in the display. The effects are extremely absorbing with the attractions changing between horizontal and vertical axis. The changes appear to be driven by significant musical changes such as intensity, pitch and speed. This provides an underling effect that complements the standard detection that emits the colour from the circular origin. The combination is possibly the best example of visuals being choreographed by music. These kinds of patterns combined with human interactions could prove understandable and beautiful. (E.g. 3)

[image: image11.jpg]
(E.g. 3): Picture taken from Winamp visualisation ‘pablos plugin v3.05’.

5.5

Particles:

Fairly straightforward, emissions are controlled via amplitude at selected frequencies; the most common form of visualisation is that of a fountain. Particles are emitted vertically with slight horizontal velocity and then are drawn downwards by a gravitational effect. Colours are generally cycled as the age of the particles increases, more often from intense ‘warm’ colours such as reds and oranges to ‘cooler’ colours such as blues and purples. The effect is without question a pretty one but it lacks many forms of recognisable links to the music. This effect is quite possibly the poorest form of visualisation with regard to the musical influences that are driving them.

5.6

Purity of the visuals:

Isolation of the content that makes for pleasing visuals is important! No mater how well any hardware devices react, without concise movement and well thought out visuals the interactive circle will be broken. If people aren’t attracted to the visuals they are creating then there will be no desire to concentrate upon making more.

5.7

Colour schemes:

It is fairly clear that colour is the second most important aspect in creating appealing visualisations second only to motion. Many effects employ colour schemes that cycle changing the ‘base colour’ that all other colours are derivatives from. As a general rule there seems only to be slight shifts in hues around the base colour and slight saturation changes that seem more occupied with displaying the passage of the waves through time gradually fading them all into a residual dark colour (brighter at birth then fading to black). This appears to be a good basis for setting up colour schemes, Cycles can be easily incorporated and whole shifts remain pleasing with a guarantee of no colour classing occurring.

A few elements that have been included are complementary colours; these also are locked to the base cycle to avoid conflict. Important is the fact that the saturation values appear to be clamped, this is to avoid gaudy colours that provide no aesthetic appeal. In most simulations the backgrounds consist entirely of black, with white being used at the creation point of the waves providing a stark contrast. These two colours are consistent, they are guaranteed to avoid clashes and depict the motives behind the graphics well.

5.8

Motions:

Closely depicted to which form of visualisation they correspond with (Radial, Particle, 2d and 3d zooms), The paths most programmes have opted for are sine deformations. Much use of the smoothness of this curve with the period set to the height or width of the screen controlling general fades, blurs and motions. This produces good results with symmetry along the plane of the curve. (most common in 2d patterns)

Patterns also seek to provide emotion in the viewer by causing disturbance in the visuals. The Vertigo effect being one of the most pronounced the viewer is drawn into the picture and forcefully immersed in them.

This is a key point, the viewer needs to feel engaged with the visuals, once this happens they start to make their own patterns out of other elements. If one predominant piece of imagery is clearly driven to the music then, automatically other elements are assumed to be doing the same.

Providing a major part of the imagery is beat orientated, other elements need not be!

5.9

Beat detection:

The fact that the songs used are non-midi tracks creates a problem, how to define the song timings. If no alternative information is provided such as beats per minute or timings how can the program find the beats of the song. Some assumptions can be made.

1. Most songs are constructed in 4/4 timing (4 beats to a bar).

2. All have drums, which are of approximately the same frequency.

3. The song must be of a good record quality with little or no ‘hiss’ upon it.

If these assumptions hold true them an estimated timing for the song can be derived. Due to the knowledge of drums in the piece frequency passes can be used to sample small sections of the sound at and given time. If the pass is accurate and a successful isolation of a drum has been made, then when the amplitude is over a given dB level you can assume that a drum has been hit and that it is a beat.

If the average of these beats is recorded, then over all, any anomalous beats should be averaged out and a good approximation will be made. If a few passes are conducted to a music sample multiple drums can be detected (e.g. bass and snare drums) thus providing multiple points for motion and colours to be switched/altered.

CONSTRUCTING THE HARDWARE:

6.1

The construction of the frequency generator was based around a core ‘555’ timer. This is a standard component that has been around since the early 70’s and has seen many revisions. One ‘555’ timer is used to generate the various frequencies needed. This is possible by varying the voltage across it, thus changing the frequency of the discharge, which correspond to the audio frequency produced.

The circuit is based upon ‘the tone burst generator’ * with several modifications made to produce the circuit that is integrated into the system. For more information into the choice of components and design a brief read of ‘getting started in electronics’ is suggested.

* From getting started in electronics page 126

6.2

The build of the Frequency generator:

Several elements that where to be included but were dismissed at the final construction were:

1. Trigger switches for testing purposes, to be mounted on the box itself. This was never done due to lack of space.

2. Individual trigger lights to show generation of signal. There was no necessity and space for this feature to be included.

Following; is the circuit diagram for the finished frequency generator unit. All values are marked next to their respective components. Note standard electrical drawing symbols apply in this diagram.

[image: image12.png]
P1, P2, P3, P4 are representations of the pressure sensitive security pads. These pads are comprised of two conductive plates that when depressed the pad forces together, completing the circuit.

R1 has a value equal to:
30K ohms

R2 has a value equal to:
20K ohms

R3 has a value equal to:
 5K ohms

R4 has a value equal to:
100 ohms

[image: image13.jpg]
Above: inside the finished frequency box, the original battery position can clearly be seen.

The footpads are connected to the frequency box via standard audio cables and connected to a mini jack, providing a small but stable contact point that has very little noise generated through it. As you can see in the pictures, the finished device is both a small and robust polymer hobbyist’s case with vertical slots to slot a PCB into.

[image: image14.jpg]
The finished generator: Complete with switch, power light, four input pads connected (right). The output jack can just be seen on the left.

6.3

Becoming Stable:

Once constructed several complications were noted in the design of the circuit.

1. The initial circuit could be run of a 9v battery for convenience. This avoided power supply noise (point 2) but created a unique fault, power shortage. As the battery lost power its ability to maintain the frequencies lowered, the amount is non-audible yet makes a significant difference on the performance in Houdini. Due to the frequency bands being strict, a slight shift on the inputs causes misalignment on all the triggers. This is unacceptable as the duration of the device became around 30 minutes of consecutive usage before the triggers where lost.

2. Power supplies. Due to the circuit only being of a minimal design the requirement for a steady form of power is important. A standard replacement power supply was used. This proved successful for a short period of time until temperature conditions changed. As usage increased the current drawn from the power supply gradually raised the temperature of the device thus changing the resistance and resulting in random frequency shifts again. This basic form of power supply also required the need for a primary filter to be set-up inside Houdini to eliminate ‘mains hum’. This disrupted the triggers and set off effects at incorrect intervals.

3. Some of the frequencies did not effect others, that is the super imposition of the waves resulted in to little change. The variation of the resistance caused the pads with high resistance to have an unnoticeable effect of those with a relatively low resistance. Whilst not a problem to the base operation of the unit, it did effect the total number of detectable waves that could be distinguished.

[image: image15.jpg]
Close up of the floor pad triggers, (connection wires bottom right).
For the purpose of the generator and its usage, no further changes where made. A decision to the functionality was made; the device should be able to perform its task.

If a more substantial device were to be made then further revisions would amend these problems.

The power supply problem was overcome by using a higher-grade device, which had tighter restrictions over its output voltage. This resolved the problem and provided adequate stability and allowed for the fore-mentioned primary filter in Houdini to be removed, allowing for approximately 2% performance increases.
[image: image16.jpg]
The final set-up, The 4 floor trigger pads and the generator box.

THE SET-UP IN HOUDINI:

7.1
Houdini:

Houdini utilises a node-based approach to computer graphics. This is in effect is a visual method of programming in which blocks of code are replaced with ‘nodes’, these are linked in similar ways to a C++ program. This provides highly flexible methods that can be worked on at all levels, throughout the work process allowing for multitudes of effects to be layered up along the structure at the same time. Following are a few screen shots depicting the typical layout of nodes utilised in the workflow.

[image: image17.jpg]
The node structure for the control input. The flow can be seen through

Line in ate the top to the various export nodes at the bottom

(Orange export flags).

[image: image18.jpg]
The operations performed upon the sample audio file. Parametric equalisers

Filter sound into math functions then exported to other elements of the program.

[image: image19.jpg]
The main sop editor where motions and texture operations where controlled.
Initially:

Having no previous knowledge of Houdini the initial set-up proved complicated. Input acquisition from the line in socket was awkward, involving manipulation of the global audio settings for the machine and Houdini’s own audio manager. (Appendix C)

Once this was set-up a record node was used to sample the line input at around 22000hz, this was necessary for frequency separation purposes.

N.B For a brief break down of the most common nodes used view appendix D.

THE CONTROLS

7.2
The floor pads that control the motion are integrated in such a way that numerous effects can be overlaid. Due to the previously mentioned problem that certain pads override others, small flickers of alternate effects can be seen when a pad is pressed in conjunction with another. Whilst at first this was seen as a non-desired side effect it does in reality emphasise the interactive element. The pads are set-ups in the following way:

Pad 1:
Controls the motion blur effect. The default screen clearance is 0.6 (60%), when pressed this is switched for the alternative pre-set value of 0.25. This pad overwrites all other footpads.

Pad 2:
Switches over to the first alternate set of visuals.

Pad 3:
Switches over to the second set of visuals.

Pad 4:
Changes the texturing and colours of all the visuals.

THE VISUALS:

8.1

Choices for the Visuals:

As seen before it is important not to over complicate the visuals as this dilutes the overall effect. It is imperative to include enough elements as to have good detection for all types of music (some effects will always work) yet there must be some form of ‘clamping’ to eliminate the ‘overworking’ that can happen. Like evolution diversity is the key, too much and nothing appears to work well, to little and some music will fail to produce visuals that react convincingly.

8.2

Circles:

Moving in elliptical paths, these create a semi-hypnotic effect, which should draw the viewer into the picture. Oval objects are constructed which ‘fly’ around in space taking their co-ordinates from a noise function. The amplitude of the music governs the apparent size of these at any given time. This effect is none music driven in motion except for translations along the cameras normal. (FIG A)

8.3

Equaliser effects:

Instantaneously recognisable as being musically driven these should work with most music and help fool the viewer into assuming everything is driven entirely by the music. (FIG A)

[image: image20.jpg]
FIG A:
default visual space at its 3rd setting.

8.4

Object into the camera:

Many of the effect types studied used a similar effect to this but fail to capitalise on it. Most have items constantly moving towards the camera; this will be varied by only allowing selected objects to move closer to the camera when the overall amplitude is high. This should cause nice pulsing effects in heavy bass rhythm songs. By utilising this effect too often people have weakened its potential. (FIG A & B)

[image: image21.jpg]
FIG B: default scene in 2nd setting.

8.5

Blurring Motion:

Needs to be applied to all of the graphics to soften them up and provide a dreamy looking effect. The length of the blur can be controlled via a pad. Once pressed the visuals could become more abstract creating softer images that build up into an unrecognisable blur of colours, This will provide a welcome break to the motions. The duration will be linked to the music, the fact its duration should be linked to the slowness/softness of the music. If the pad is pressed for a long duration then the music is not causing dance and so the visuals will be soft too, In contrast the higher the tempo the less duration on the pad and so only slight increase’s in the bluing will be noticed. (FIG C)

[image: image22.jpg]
Fig C: default visual space in its 2nd setting.

8.6

Textures:

Applied on moving surfaces and projected in world co-ordinates these provide cheap effective methods. The objects will appear to swim through them causing smooth visual shifts. If recognisable pictures are used then extra stimulation will be caused by parts of the picture being revelled only at different amplitudes. If incorporated with blur effects the picture will appear to fade out over time as the objects pass through space leaving residual trails. (FIG D)

[image: image23.jpg]
FIG D: Example of objects passing through a texture projected in world space.

[image: image24.jpg]
FIG E: default visuals in setting 3 with palette alteration.

8.7

Particles:

After a brief look at the creation and manipulation of particles in Houdini, particles where quickly departed with. The usage in Houdini is excellent, as is manipulation; the problem is the intensity of the calculations the O2 would have to perform. Even with a small number of particles on screen the visual update rate dropped down to around 4 frames per second. This is a shame as it would have been nice having explosions when specific pads where pressed.

HOW THESE VISUALS ARE BROKEN DOWN AND CONTROLLED:

9.1
Different movements for the triggers:

To help associate the floor pads to the visuals, switching is important. When pressed, one or more of the pads should cause certain elements to disappear and others to become visible. This serves two purposes; it provides variation to the images and draws full attention to the visuals when triggers are pressed. In this set-up 3 separate visual spaces are created.

Space 1:

This is the default visual space that is played when none of the pads are pressed. Comprised of 4 primitive multicoloured EQ bars and flying ellipses (simplified for speed purposes), This space can take 3 primary states that are controlled from pad 1. Each time the pad is pressed the scene rotates 120 degrees and switches its colour pallet. These are orchestrated to provide colours that complement each other only.

The equaliser bars are driven from 4 separate samples of the sound and grow in correspondence to the amplitude. The simple ellipses pulse to the camera with regard to the entire amplitude of the waveform. This works well with the EQ bars as the intensity of the visuals can build up quickly in response to musical changes.
(Shown in FIG A, B, E)

[image: image25.jpg]
FIG F: With trigger 2 pressed the above image is displayed in the default space.

Space 2:

Driven from pad 2 this space is constructed around a simple lamina of a human silhouette. This lamina also pulses along the Z-axis of the camera, in a similar style to the ellipses in space 1. The lamina has various textures applied to it that vary once again depending on the recorded inputs from pad 1.

All textures are applied in world space; this means that the lamina appears to fly through the texture revealing more of it as it approaches the camera. This allows for strange blurring of the edges of the texture as they fade out and blur with the motion of the lamina. Also in this scene are two ‘super quads’ that change shape from triangles to cylinders depending on the amplitude of the music.

[image: image26.jpg]
FIG G: sample image created from a combination of trigger 2 and 1.

Space 3:

Utilising the ability of text, 2 Greek symbols are used to receive textures, once again these are in world space. These symbols pulse to the music and have a constant spin that is relevant to the frame. Three texture options are cycled from pad 1. Six circles are formed in a row (FIG F, G); all of the circles are identical. The circles are broken down into a segment; the size/sweep varies with the amplitude of the music.

These 3 ‘spaces’ co-operatively form a variance of 9 moving images, this coupled together with the pad that blurs the images provides a fairly wide range of visuals for this sample design. On a larger system more textures could be used in conjunction with more pads to create a vast library of visuals.

PROBLEMS IN HOUDINI:

During usage several bugs and limitations where noticed in Houdini. These hampered progress somewhat but also forced alternate methods.

10.1

The 40meg Addition game:

One of major concern was that of workspaces suddenly gaining 40 megabytes in size between 2 consecutive savings. This resulted in large slow downs that caused instability, the workaround for this was to copy every node and paste them into a new Houdini file. This proved time consuming and tricky.

The CD-player shocker:

Upon using Houdini I quickly found out that their was no support for the O2’s CDROM drive in the version of Houdini that I was using (later versions can apparently support this feature). This resulted in having to use a wave file to test the product.

10.2

Hardware Limitations:

Strict limits where set upon the complexity of the visuals by the hardware itself. Whilst concerns where apparent throughout the duration with regards to the input sampling and audio processing the biggest limitation to the visuals was the OpenGL itself.

Whilst running the visuals a TOP (table of processes) report was executed, this showed that the Houdini process itself was only utilising around 40 – 60% of the CPU’s time. With 40% minimum power left and slow downs still apparent the speed implications can only be put down to the OpenGL hardware.

10.3
The accompanying video:
Unfortunately the video that demonstrates the usage of the system did not turn out as well.

Due to complications in exporting the video in real-time from the O2’s a camera was needed to video the screen. This resulted in a loss of quality with most of the visual effect being lost. The other option was to record the inputs from the pads and allow Houdini to render them out; this proved unacceptable as the addition of another record node prevented real-time interaction with the system. Also of concern is the video footage of the usage of the pads. It seems to be unclear as to the effects produced, this is due to a lack of thought in the set-up of the demonstration. I can only ask that the workspace is loaded up and witnessed in person.

CONCLUSION:

11.1
The primary aim of this project was to devise a method for human interaction to visuals with regard to music. I feel that this in general has been accomplished in the product, but on a more limited scale than was initially conceived. Part of this is due to limitations in the design of my system, but mainly due to hardware limitations. As mentioned before, the OpenGL power of the O2’s limited the amount of effects that could be layered up, this effected the overall quality of the visuals and thus some of the mood that was to be created is not as predominant.

Whilst I am impressed with the power of Houdini’s real-time visuals the work flow to the program took a lot of getting used to and drew time away from other key elements, it felt at times that two innovations where underway, the project itself and the speed learning of Houdini. Without the need to integrate effective hardware controllers it would have been more effective to program the visuals.

The time spent learning Houdini could have been used in sampling audio in to a form that OpenGL could use to produce visuals, thus avoiding the overhead of a separate software package and the learning of it. This is something that I may investigate further at a later date. This is not to say that I don’t believe that learning an element of another software package is irrelevant, just that for this project alone possible an alternative may have been better with hindsight.

I am very happy with the constructed hardware solution, it is both practical and far lighter to process than I originally thought. Given a machine that had a better level of midi implementation I would have chosen midi, but as a viable alternative I think that my alternative method holds up well. With a few simple alterations the stability could be improved to the extent that the simulated analogue to digital converter could be lowered down to around 8khz from 22khz. This would same CPU power for computing extra triggers and math functions enabling more complex visuals (OpenGL aside). I feel it is a feasible solution for the application and performs the task well enough to be considered successful development.

In the finished visuals I initially expected complex motions and effects similar to a ‘winamp plugin’ but once I started to produce the visuals I realised that this would not be the case and was forced to optimise everything, all effects had to be scrutinised carefully for speed implications. This was disheartening and occasionally dampened my enthusiasm for the project as I felt that without hardware restrictions I could achieve and maybe exceed some of the visuals that where present at the IDC.
Finally:

To finish, I’m happy with the end result. The idea was realised; a new package was learnt, some basic electronics developed and a firm knowledge of midi implementation gained. I feel I know a lot more about the considerations that need to be made when producing visuals to music, especially in real-time. Before, I never truly appreciated the difficulties of beat detection and sampling in a programming sense (node based or otherwise). This is not to mention the effects that can be gained form simple geometric forms.

Self improvement:

I have no doubt that this has made me realise that I can accomplish tasks that at first seem beyond my capabilities. This will stand me in good stead for future needs and give me confidence to tackle other problems/tasks. To complete a project when my initial thought was, ‘how an I going to do this’ and to have no idea of how to progress is immensely satisfying.

APPENDIX:
A:
Basis of midi:

The basis for MIDI communication is the byte. Through a combination of bytes a vast amount is transferred. Each midi command has a specific byte sequence. The first byte is the status byte, telling the midi device what function to perform. Encoded in the status byte is the midi channel. Midi operates on 16 different channels (0 – 15). Midi units will accept or ignore a status byte.

General midi:

In its simplest terms is a standard set of patches (instrument patch map), each patch represents one of a list of 128 sounds with corresponding midi program numbers. This allows for easy distribution of midi files and guaranties a level of audio compatibility, in much the same as the HTML for web pages.

General standard:

Is based upon General Midi, Roland created this subset of general midi for greater control uses same protocol but gives extra communication and transmission options.

Depending on what channel the machine is set to receive. All following bytes are assumed to be on the same channel indicated by the status byte until another status byte is received.

Some of the functions indicated in the status byte are note on/off, system Exclusive (sysex), patch change and so on. Depending on the status byte, a number of different byte patterns will follow. The note on byte tells the midi device to begin sounding a note. Two additional bytes are required, a pitch byte (telling which note to play) and a velocity byte (how load to play the note).

The note off byte is the same as note on byte in consideration of its following byte patterns but is a separate command.

Other important bytes are the Patch change byte; this switches program numbers on a synthesiser. The sysex status byte - tells manufactures id number or timing byte, data format of function byte and an end of transmission (eox) byte.
B:
PIN#
Macintosh
Antona RS-422
Antona RS-422
Antona RS-232
O2 Serial port

Mini-8 Din
Master

Slave

End

Dsub 9pin

Dsub 9pin
Dsub 9pin
Dsub 9pin

1
DTR

GND

GND

DCD

DCD

2
CTS

RC-

TX-

RX

RX

3
TX-

TX+

RC+

TX

TX

4
GND

-

-

DTR

DTR

5
RX-

GND

GND

DCD

GND

6
TX+

-

-

-

-

7
-

RC+

TX+

RTS

RTS

8
RX+

TX-

RC-

CTS

CTS

9
-

-

-

-

-

Looking at the Male end of a mini-8 din connector, the pin numbers are as follows:

[image: image27.png]
Looking at the end of a d-sub 9pin connector, the pin numbers are:

 [image: image28.png]
C:
Analogue to Digital converter:

In sampling the input several key nodes where used in transforming the analogue input in to a more useful digital form. A digital signal is preferred, as the state is simpler to evaluate, with the analogue signal the amplitude is not known and it is impossible to differentiate between the floor pads. Since this is precisely the use that is required a simulated analogue to digital converter must be created to provide useful data.

Parametric equalisers:

Passing the audio through a parametric equaliser, frequencies where able to be detected. By setting the pass amplitude high and altering the central frequency small differences in frequencies where magnified. The ‘pass amplitude’ boosted the filtered wave, which exaggerated the changers in frequency and sharpened the fall off between the floor pads. The central frequency adjuster was used to ‘lock on’ to the approximate frequencies of each pad in turn and provide a base to separate the wave from. Other frequencies still pass through this filter but due to the amplitude difference it is clear which is meant to be the trigger and which are not destined for this route.

Triggers:

 By setting the trigger threshold to just below the amplitude of the preceding parametric equaliser very stringent conditions where enforced to prevent pads spanning more than one trigger (perceived input per pad). When the set trigger level is exceeded the output is changed from the default ‘0’ to ‘1’. This is very useful as from now on the trigger can be considered to be ‘digital’.

Due to the lack of any variation typically triggers where fed into maths function nodes, providing simple multiplication and addition functions these directly controlled several copy functions (as illustrated later) allowing for changes in the visuals.

Export node:

Used to control elements in different modules of the programs these provide a fundamental link that controls every motion that is displayed. Typically these exports where targeted at rotation and translation parameters of x-form nodes.

Xfrom nodes:

Short for transform nodes, these control the position, orientation and scale of the objects. By creating connections to these parameters motions where controlled by export chops. Pre-filtered signals of varying frequencies where used to control all axis’s independently, creating a 3D equalisation effect.

Copy nodes:

These where one of the most important nodes in that their usage was quite varied. Copy nodes where used to duplicate geometry in every ‘space’ thus eliminating the need for vast nodes of repetitive object definitions.

They where also used to control visibility of objects. By using math functions to invert the triggers, copy nodes could have a reproduction value of zero when certain pad was pressed. If the value is greater than 1 objects are shown. This is a crude method and Houdini probably has a more sophisticated form of doing this procedure, but it is a derived method that works and is computationally light.

Switch nodes:
Used primarily for controlling textures. Values were passed into the ‘/input’ control parameter and cycled. This allowed for a multitude of textures to be switched into use for the display. Once all the textures are loaded into the scene this is a very efficient manor for controlling them.

Merge nodes:
Used for viewing collections of object structures, because Houdini only allows one viewable object in a sop at any given time these became very common in the network editor.

BIBLIOGRAPHY AND INFORMATION SOURCES:

Visual Representations Of Speech Signals, Wiley Professional Computing, 1993.

Getting started in electronics – Forrest M. MIMS, III.

The best of Midi – thebestofmidi.com

Audio and O2’s -Internet article from Georgia Institute of Technology.

Silicon Graphics Internet site – www.sgi.com
WinAmp plugins: Guist, G-Force, Hypersonic, and White Cap.

Fantasia, Disney DVD.

Fantasia2, Disney DVD.

Houdini Reference Manuals and tutorial guides.

All hardware purchased from Maplin Electronics.

Special Thanks:

During the course of this project I pestered a few people! Now I would like to say, “thank you very much” to the following:

Ian Stephenson,

Mark Hodgkins.

You have both been of great help.

Fin
