Investigation into the technicalities of producing the animation of tearing paper

Innovations report

Helen Arntsen

BACVA3

2004

Abstract

The aim of this paper is to find the best method to produce the animation described in detail in appendix A. The technicalities of the animation are to animate paper tearing with the image on the paper changing. This paper, discusses the various ways that the animation of tearing paper could be implemented. Testing various potential solutions leads to an analysis of the approach, which highlights any technical problems. Various solutions to technical problems are attempted, and analysed. Finally the paper makes comparisons between the methods and results of the approaches, in order to deduce which is the best method of production.

1. List of techniques available

There are many animation techniques around today. The first step in deciding what is the best way to produce the animation is to list all of the different approaches that are available to use. They fit into three categories: 2D approaches, 3D computer generated techniques and stopframe animation.

1.1.1 2D

The 2D approaches include frame-by-frame cell animation, using various 2D image deformers, or using a simulated 3d tool such as the one found in Shake.

To produce the piece by painting each frame would take a lot of time and would require a huge amount of skill. Even using image deformers animating a 2D image changing would be a long process requiring great skill.

1.1.2. Stop frame

The animation could be achieved using a stop frame technique. The benefit of using stopframe animation is that the image is instantly believable, as it is a photo of a real object. In order to retain this believability the motion must also be realistic. This is also a technique, which requires a large amount of skill.

Using stopframe the animation could be achieved by printing out each frame of the filmed footage of a man’s face, onto paper. Then placing each piece of paper under the camera one by one in order, animating the paper ripping. The tears on each paper must match up with the previous piece of paper and have torn just a little bit further each time. Once the paper reaches the mouth of the man, holes in the paper must be made in the mouth in order for the paper to be eaten. By using stopframe the image of paper will be immediately believable as real, as it is in effect real. No effort would be required to make it look photorealistic, as it is already realistic. However there are draw backs, this technique would prove to be very difficult to implement. Tearing paper is not easy to control even when the paper is scored, and cutting the edge would leave undesirable sharp edges instead of a torn white line. This method could also prove to be very expensive as printing out each frame of the filmed footage, to a high quality would be expensive.

One way to get around the problem of matching up the tears and the expense of printing out each frame is to combine 2D image deforming with stop motion. Instead of animating separate frames printed out onto paper, animate graph paper, tearing and aiming towards a marked and numbered cross representing the mouth. Using the UV editor in Maya to deform a file texture, which is projected onto a plane, can act as a 2D image deformer. If a grid of UV’s is made, where each UV matches up with a point on the graph paper, which is used as the movie texture. As the points on the graph paper in the stop frame animation move, the UV’s can be animated to match up with them. When the movie texture is swapped with the footage of a man’s face, the animation of the UV’s will deform the image to look like its bending. Then in Shake or another compositing package, the opposite side of the graph paper (the white side) can be composited over the deformed footage, so the footage looks like it is tearing. However, this may prove to be a difficult process, especially obtaining the alpha for compositing without painting any frames.

[image: image1.jpg] Figure 1
1.1.3. 3D

There are various promising 3D approaches, which could be used to create this animation. It would be useful to note here that any discussion on 3D approaches is limited here to methods available in Maya 5.0. These methods would probably be applicable in other 3D packages, but they will be discussed in the context of Maya 5.0. It would also serve some use to note here, some assumptions about solutions when using 3D approaches: Interaction between the filmed footage of a man and the animation, will be achieved not by compositing but using the footage as a movie file texture. When using hardware shading, animation can be done to fit in with the filmed footage. Blendshapes are a commonly used method for producing facial animation. Since they are a tried and tested method it makes them an obvious choice for the animation of the mouth, as it chews the paper. Therefore when discussing 3D approaches, this aspect of the animation will be left out as there is no discussion as to which technique to use. The discussion will focus on the issues associated with the tearing motion.

The various 3D approaches can be divided into two sub-categories; manual approaches, and simulated approaches.

The manual approaches are techniques, which use kinematic models. Kinematic models are passive because they do not interact with each other or with external forces. Manual approaches include key framing tweaks to the model. This would eventually slow down the system because when teaks are keyframed every point in the scene is keyed. Lattice deformers, which are difficult to control to any satisfactory degree are also not a very useful way of deforming an object, which is infinitely thin in one direction. This is due to the fact that a lattice would only increase the amount of points to animate.

Another approach using kinematic models is the use of blendshapes. Blendshapes allow you to have the same freedom of control over the animation as key framing vertices, without the computation of keying every point. It also gives you the additional freedom of being able to adjust the timing of the animation easily, as you key the blendshape sliders to key the time that it takes to blend.

Using Joints and treating the paper as a character, by boning and skinning the paper is also another technique based on kinematic models. By creating a network of joints along where the paper tears, the joints can be animated, curling the paper towards the mouth. Each of these approaches would require planning before implementation to decide exactly where the paper should rip and where the mouth is on the scene at all points of the animation.

The simulated approaches are techniques, which use active models. These models are based on principles of mathematical physics. They can react to applied forces, such as gravity, constraints or impenetrable obstacles. These models are aware of the environment around them and them selves. They act, as one would expect real, physical objects to react. Implicit Surfaces - coated in particles is one such approach. Particles are able to react to the environment around them, they know when they collide with other objects (Andrew P.Witkin [4]).

Cloth is also based on an active model. When you create cloth it becomes an intelligent surface. Cloth could be used to create the paper, but it would need to act more like paper (Eitan Grinspun[1]).

1.2 Outline

The remainder of this paper develops as follows:

Section 2 discusses the implementation stopframe animation of paper tearing and analyses how effective this technique is. This section also discusses 2D image morphing using the UV editor, with the animated graph paper and analyses the results.

Section 3 gives the method of implementing blendshape deformers to produce the animation and contains an analysis of the results. Discussing briefly the new problems this revealed, and attempts made to counteract these problems.

Section 4 discusses how bones could be used to implement the animation, explaining how bones can help avoid problems found using blend shapes.

Section 5 contains a brief description of cloth, and the way in which it can be used to animate paper tearing. It also discusses the result of tests, produced with cloth.

Section 6 discusses how the torn edges of the paper can be made less sharp, explaining the need for edge detection. Examples of existing edge detection methods are given and explanations of why these are not appropriate. An examination of which edges need to be detected as torn and when they should be detected as torn is given here. This section also gives a new method of 3D edge detection, which is appropriate for finding the torn edges.

Section 7 analyses all the approaches tried and attempts to conclude which is the best method, discussing any further development that can be made to aid the production of the animation.

2. Stopframe

Producing a quick test in stop framing paper highlighted difficulties in using paper as a material to animate with. The test was done by laying a sheet of graph paper on a work surface, with a cut in the paper where the mouth might be. Plasticine was placed below the paper around the mouth to help keep the paper in position and mould any mouth movements. Datum lines around the paper were also used to help keep the paper in the same place. Using a tripod a digital camera was placed over the work surface, although this is not ideal. Using a rostrum would be more effective, because when animating with a rostrum, animation is played back after each frame is recorded. This gives an idea of timing, which aids the decision of how far to rip the paper on the next shot.

 [image: image2.jpg] Figure 2
Through the test it became clear that paper does not actually sit well, it was very difficult to stop the paper from moving before the photo was taken. Paper is also very ‘springy’. That is the paper tries to return to its previous state unless the surface of the paper has been stressed enough to crease or has torn. So in order to achieve the curling motion of a strip of paper tearing the surface must be creased. This produced rather unnatural and 'unfluid' movements. The main difficulty with animating paper is that once the shape has been altered too much it may not return to its original shape. For example if an accident occurs whilst ripping the paper for the next shot, and a piece of paper is torn off and separated from the rest this cannot be undone. There is no way to re-attach the separated piece of paper. Therefore the whole animation must begin again with a fresh sheet of graph paper.

More problems occurred whilst trying to use the UV editor to deform and image, by animating UV’s following a point on the graph paper. Since the stopframe of the paper required that the paper be stressed before it would stay in the intended position the paper bending gradually, was never really shown. Therefore, as seen in figure 1, the white side of the paper is seen growing and moving towards the centre. There is also the 2D problem of what happens when the paper bends to face the other way and the point the UV is following is not visible anymore.

3. Blendshapes

A ‘Blendshape’ is a deformer, which blends the base shape to the target shape in specified amounts. Implementing blendshape deformers is a very simple process. This is also a technique, which gives you lots of control as the target shapes are created by tweaking vertices. Blendshapes can also be altered once they are created, so if the shape needed to change for any particular reason it can be done. The timing of blendshapes is animated by keying sliders, which control the amount to blend. Therefore altering the timing of the animation once it had been animated it is very simple to do. With the standard blendshape tool in Maya the base object and the target object must be topologically the same. This means that they must have the same number of vertices, edges and faces. You can only blend between an object and a deformed duplicate of that object. This would make tearing impossible if the whole object was one blendshape. Tearing will produce more external edges, thus altering the topology of the object. There are methods that have been suggested to get around the fact that the target and base object must have a similar topology (David E.Breen [3]).

However, if each torn strip of paper is a separate object it will make the animation process a lot easier and avoid the problem of topology change. If the separate strips are created out of one object (a polygon plane), by extracting the strips from that object, they will then line up and appear as one object. This can be done by marking off the edges of each strip using the ‘split polygon’ tool, selecting all the faces on the strip and extracting them. The strip then becomes a separate object. These separate strips of paper which form a whole sheet of paper can now each have their own set of blendshapes, so they can all be animated individually. This is more useful than having the piece as a hole, because if one strip of paper needed to tear a little slower than it was initially animated, it could easily be done by retiming the slider for that particular strip’s blend shape. However if the paper was made out of all one object then, the strip must be altered by tweaking points on the a sequence of blendshapes, which would be a very laborious process.

When creating the positions of the blendshapes a few problems appeared. Modelling for a target blendshape involved groups of vertices being selected and rotated to model the paper curling (figure 3). This made the distances between vertices stretch (figure 4). Any stretch to the surface area of the paper is undesirable as paper is a non-elastic material and therefore cannot stretch. By eye the vertices must be moved back using the translate tool, in order to reduce the stretching (figure 5). This technique is not very accurate. A tool, which could help restrict the distance between adjacent vertices from stretching, would be useful, so long as it didn’t reduce the freedom of modelling by tweaking vertices.

[image: image3.jpg] [image: image4.jpg] [image: image5.jpg]
Figure 3 figure4 figure 5

Another problem which appeared was that the model of paper was only one face thin. Modelling the paper with any kind of depth would have caused a lot of self intersection problems whilst bending as the sides of the paper would have to be so close together to give the appearance of a thin sheet of paper. Since the paper is only one face in depth, both sides of the face will need a different texture on. This is because when the paper tears and curls and the other side becomes visible, the opposite side needs to look like the other side of the magazine page. So a method of having each side shaded differently is needed. A solution to this is given in section 6.

When the paper tears using blendshapes the torn edges appear very crisp. In reality paper is made up of many interwoven fibres. When paper tears these fibres separate unevenly and the edge becomes rough. There needs to be a way of making the exposed edge appear like a torn edge. This will also be discussed in section 6 and a solution will be proposed.

3.1 Restricting stretch in distance between adjacent vertices

“The shape of a body is determined by the Euclidean distances between nearby points. As the body deforms, these distances change. Two 3 – dimensional solids have the same shape if their metric tensors (the lengths between nearby points) are the same. However this no longer need be true when the body becomes infinitesimally thin in one or more dimensions. Thus, the lengths between nearby points do not determine the shape of a surface, since curvature can be altered without affecting lengths. The fundamental theorem of surfaces states that two surfaces have the same shape if their metric tensors (distance between two points) as well as their curvature tensors are identical functions…” Demetri Terzopoulos[ref number].

Paper is thin in one dimension so it should be possible to alter curvature of the surface without affecting the distance between adjacent vertices. In order to stop the surface area of the strip of paper from changing it is important to restrict the distance between vertices from changing. However to try and lock the distance between vertices would limit the benefits of using blendshapes, which give the freedom of modelling by moving vertices. Locking the distance between vertices would make the surface very difficult if not impossible to model with. A tool, which would at the press of a button record the distance between each adjacent vertex, then after vertices had been tweaked, another button would snap the distances between the vertices back to their recorded distance, would be very useful. This tool would allow you to model freely then ensure that the distances between vertices will not stretch or shrink. So the surface area of the shape would not change.

This tool sounds good in theory but in practice it unfortunately is unable to work for the simple reason that there is no way to decide what order the vertices should be moved to snap the distances.

Whilst modelling a blendshape for a curling strip of paper, only some of the vertices are required to move. The rest of the vertices need to stay in their original positions, as that part of the paper is not torn yet. Generally stretching of distances occurs between vertices that have moved and static vertices (vertices that have not moved yet as seen in figure 2). So it would be a good idea to tug all the vertices that have moved back towards the static vertices, so the static vertices are not affected. However to make sure that all the edges have stayed the same length they must be checked one by one in a particular order. To make the tool worthwhile it should not change the world space orientation of any of the edges, that is, the world space orientation of the vector between two adjacent vertices. So one vertex must move along the vector until the distance between the two vertices is the same as the original distance.

When trying to decide on the order it became apparent that the movement of one vertex would always effect the orientation of the other vectors it’s attached to as seen in the examples below (figure 6).

[image: image6.jpg][image: image7.jpg][image: image8.jpg][image: image9.jpg]
Figure 6
Also seen in the examples above is counteraction on the snapping. Whichever vertex checks the length of its surrounding edges first, will move itself towards any adjacent static vertices. It then moves any surrounding vertices towards itself. Once the first vertex is happy it’s the turn of an adjacent vertex to check the lengths of all of it’s adjoined edges. The only problem is that it now moves towards any surrounding static vertices to make this distance the same as the recorded distance. This movement then counteracts the previous movement and the length between vertices one and two is now incorrect.

4. Joints and bones

Joints and bones work on a hierarchical basis, there is a root joint to a line of joints, if this joint is moved it will effect the next joint down the hierarchy, this joint will in turn effect the next joint and so on. Joints and bones are usually associated with creating character set-ups. However, joints are useful for simplifying the animation of many complicated movements. In order to animate the paper using joints, we can treat the paper as if it were a character, and give it a skeleton as demonstrated in figure 5 below. By using the model of many separate strips as with the blendshapes, each strip can be given a spine (line of connected joints), then the surface can be bound to the joints and the weights can be painted. Once this is done, the joints can be rotated to animate the paper curling.

Using this method you can avoid the paper stretching by locking the translate values on the joints. By only being allowed to rotate joints the distance between joints will never change. This process however, would be quite laborious to set up, paint the weights and animate, as there would need to be a high concentration of bones, to make the animation look good.

[image: image10.png]

Figure 7
The test done with bones used forward kinematics. When using forward kinematics all the bones must be animated each time a new bone begins to curl this is to straighten the strip out in the correct direction so that it doesn’t curl in on itself. A sequence of IK’s on each strip could be a solution to this problem, this however, would add further work onto the set up of the method.

5. Cloth

Cloth is based on an active model; this model can react to applied forces such as gravity, constraints and impenetrable obstacles. Dynamic effects can be applied to cloth, and the cloth’s behaviour simulated.

The simulation of cloth involves numerically solving the partial differential equations that govern the evolving shape of the deformable object and its motion through space. For more information of how cloth is simulated please refer to papers (Eitan Grinspun[1], Demetri Terzopoulos[2]).

Cloth objects are modelled using standard modelling techniques. For tests using cloth the paper strips from the previous experiments were used. These polygonal surfaces were then converted into cloth objects by selecting the object and going to Cloth > Create cloth object. The object is then ‘cloth’, ‘cloth’ objects have many attributes in the ‘cpProperty’ node. These attributes effect how the surface behaves. By changing the value of these attributes, the surface can be made to react more like paper and less like cloth.

The U/V bend resistance value controls the amount of resistance to bending in the U and V directions. A resistance value of 100, was used in the tests, as the greater the resistance the stiffer the cloth. Since the slide values for the attributes represent the ideal values for cloth it is best to go for values which are, quite extreme or beyond the values when representing paper as, paper has quite different properties to cloth. These properties must be considered, when deciding on the attribute values. Paper, unlike cloth, does not have the ability to stretch, therefore the U/V stretch resistance, values should be very high. The values used in the examples in Appendix B were 100. Since paper does not shear either the Shear resistance values were also very high. Shear resistance controls the amount that individual triangles resist moving in opposite , but parallel sliding motion. The bend rate attribute effects the bend resistance, when at 1 bend resistance can be very high that it will not bend without a huge amount of force.

When the bend rate was tested at 1, the results (Appendix B, cloth_tests, twisting_problems) caused the strip of paper to stretch and twist an excessive amount. When the bend rate is 0 the resistance will be more constant, it wont stretch and twist, and will curl more like paper (Appendix B, final_cloth_test).

[image: image11.jpg] [image: image12.jpg]
Figure 8
The main difficulty with using cloth is trying to get it not to move when it is supposed to lay flat. The best way to do this is to create a surface, which the cloth strips can lay on and stick to when it is not torn. To create this surface a collision object needs to be made. Create a plane and put it next to and behind the cloth strips, then go to cloth>Create collision object. The cloth strips can now interact with the plane. To make the cloth lay flat on the plane, mesh constraints can be used to constrain vertices within the cloth strips to points on the surface of the collision object (the plane). To see the results without the mesh constraints please refer to Appendix B, ‘cloth_tests’, ‘without_meshconstaints’.

Animating the paper tearing is very simple using cloth. A translate constraint can be made which attaches a vertex, which lies on the corner of the strip to a locator. The locator can then be animated and the corner of the cloth will follow it, dragging the rest of the cloth with it. In order to make the cloth tear, the mesh constraints on the vertices of the cloth must be released. This can be done using

a sequence of mesh constraints on one strip. As a strip is torn away from the rest of the paper the mesh constraint weights go from 1 to 0. When the constraint weight is 0 the constraint has no effect and the vertices will move from their original position. Using a sequence of mesh constraints, gives the ability to release the constraints one by one as needed. This is the only animation that needs to be done using cloth the rest is simulated. However, the simulation is the down side to using cloth. Simulating cloth takes along time to solve. ‘Solving’ is

done by playing along the timeline. Once it has been solved the animation will play normally, at normal speed. However, any changes made to the animation will not appear until the cache is deleted and solving is done again. This disrupts the interactivity of the animator and work, as seeing the results of tweaking the animation is not instantaneous.

6. Edge detection

The problem with using 3D computer graphics to represent the paper tearing is that the torn edge will appear sharp and crisp. In reality paper is made up of a fine mesh of fibres, and when torn they separate from one another producing a random jagged edge.

The sharp edge can be treated with postproduction work. Photoshop has a ‘torn edge’ filter, used correctly this filter will produce the appearance of torn edges. In order to create the torn edges you need to provide the filter with an image of all the edges to treat. Therefore a method of detecting the torn edges is needed. There are several methods for extracting the edges of a 3D object. In the following subsections, these methods will be analysed in relation to the problem.

6.1 image based edge detection

The most basic method used to detect edges on 3D geometry is a method implemented as a post – processing step. This method uses image based edge detection. In all good image-editing packages such as Photoshop and Shake, there are edge detection filters. Edge detection filters take an image, such as a rendered frame and find any pixel intensity discontinuities within the image. These discontinuities are represented as white lines on a black background. Image based edge detection methods process the image ‘’as it is’’. As a human being, we know there is an edge because we use knowledge in addition to what’s contained in the image. We can judge an image and recognise an object, which exists in our world as we have a previous understanding of the object in 3D and understand where the edges of the object should lie. Because the edge detect filters process the image “as it is”, they don’t always produce the images that we were expecting. A technique used to aid the edge detection filter is to render the 3D object using a shader, which emphasises the edges; such shaders are called normal shaders. Results from using a normal shader on a sphere, cube and a torn plane can be seen below in figure 9.

[image: image13.jpg] [image: image14.jpg] [image: image15.jpg]
[image: image16.jpg] [image: image17.jpg] [image: image18.jpg]
Figure 9
The theory behind the normal shader is that to detect the edges reliably requires that the objects be given a reasonable solid colour that is different from surrounding objects. The colours are only to distinguish between separate surfaces and do not need to represent the surfaces actual colour. The normal shader used in the above photo was created using a tutorial found on www.highend3d.com. The shader works by shading the surface colour from a ramp, using angle of the surface normals of the object in relation to the camera.

In the examples below (figure 10) a normal shader, made by Wil Whaley was used, in order to get a good image for the edge detect filter. The image was then processed using a Photoshop find edges filter, then with a torn edge filter. Finally the torn edges are composited over the textured render.

[image: image19.jpg] [image: image20.jpg] [image: image21.jpg]
Figure 10
As demonstrated in figure 11 (a detail of the above), there are some obvious errors to using this method. The red lines indicate where torn edges have been drawn on the sharp man made edges of the paper. The red lines also show where a torn edge has been placed on the curved surface of the paper as it bends. This problem could be solved, simply by painting out the torn edges, which aren’t meant to be seen prior to compositing. However, this would involve painting each frame of the animation, and as more strips of paper began to tear in the animation, it would become a rather laborious process.

[image: image22.jpg]
Figure 11

6.2 Geometry based edge detection methods

Geometry based edge detection methods involve applying a toon shader to the objects. A toon shader is a shading technique used to draw an outline around an object.

A simple toon shader will compare the normal from the camera to the normals from the objects being rendered. Using a dot product calculation, to find the ratio of how a particular object normal differs from the camera normal, will give us a range of 0 to 1. This range can then be used to specify that an outline should be rendered in the desired area. This in basic terms means, as illustrated in figure 9, when the surface normals of the object being rendered are of an angle similar to 90 to the normal of the camera, then draw a line, otherwise shade as the texture suggests.

[image: image23.jpg]
Figure 12

This simple shader can be achieved by using just four nodes in the hypershade as demonstrated below. The ‘sampleInfo’ node is used to extract the facing ratio of the normal being rendered with the normal of the camera. This produces a range from 0 to 1 as explained above. The condition node compares the facing ratio, supplied by the ‘sampleInfo’ node, to it’s second term. The second term is set to 0.4 in the attribute editor, and the operation is set to “greater than”. This means that if the facing ratio is above 0.4 then the condition is true, and if the facing ratio is below 0.4 then the condition is false. In the condition node you can set the colours, which will be displayed when the condition is true or false.

When the condition is true, it is assigned a colour value, this can be whatever you want the centre of the object to be coloured as. A black shaded ‘Lambert’ has been assigned when the condition is false. This will draw a black area wherever the facing ratio is less than 0.4. This is when the surface normals are beginning to face away from the camera, which should give the appearance of a black edge.

[image: image24.jpg]
Figure 13

The results of using this method are displayed in figure 14, these results show that this shader will pick up only the surface of the paper as it bends. This is because the sheet of paper has a depth of only one face. Edges will not be drawn on the edge of a sheet of paper, as there are no surface normals, which are turning away from the camera. This method of edge detection only works for rounded shapes, where there are normals, which begin to face away from the camera.

[image: image25.jpg] [image: image26.jpg] [image: image27.jpg]
Figure 14
A more complex toon shader that has the ability to draw contours is a contour shader. Information about this shader has been taken from a tutorial by Rory Hunter[5]. The shader involves changing the attributes of the standard shading group, by connecting a contour_shader_simple to the contours attribute, in the mental ray tab. The camera must also be allowed to output contours, this can be done under the MentalRay tab in the attributes of the camera, by connecting a contour shader to the output shader. Also in renderglobals under the MentalRay tab, quality/contours section a contrast shader and a store shader needs to be chosen. The contrast shader decides where contours should be and the store shader picks up information that is made available for the contrast shader to base its decisions on. The attributes of the contrast shader can be changed using the ‘contour_contrast_function_levels’ shader. The attributes determine where the contours should be drawn. Contours can be drawn when there is a sufficiently large difference in depth, and if there is a change in materials. Contours can also be drawn if there is a sufficiently large change in normal. This allows contours to be drawn around the edges of objects, regardless of whether the shape is rounded or not. Contours will also be detected on edges, which are facing the camera as demonstrated in the figure 15 below.

[image: image28.png] [image: image29.png] [image: image30.png]
Figure 15
Although there is some leeway in deciding which contours should be displayed, there is no way to detect only the lines, which are torn. This is because the torn edges, as far as the renderer is concerned, are no different from the edge of the outside of the paper. The rest of the subsections in this section outlines exactly which edges need to be detected and when. Then a method is given which has been developed to solve this problem.

6.3 Examination of torn edges

When paper tears the fibres of the paper are separating, this gives an uneven jagged edge. When the fibres of the paper separate they expose the inside of the paper. On printed paper such as a magazine page the internal fibres in the paper will have remained white, whilst the outer fibres have been coloured by ink. The process of tearing paper exposes these white internal fibres. The fibres are only exposed on one side of the torn strip. Only the side which faces the strip of paper that it was previously apart of it will have the white exposed. This is illustrated in figure 16.

[image: image31.png]
Figure 16

This examination reveals the edges, which need to be detected. In all of the implementation of the animation in cg, the sheet of paper is made up of separate objects (strips), which when unmoved lay seamlessly together, giving the appearance of a sheet of paper. When a strip of paper is torn, one object curls, whilst the adjacent strips lay flat, if they have not already been torn. When a strip is torn, vertices and edges that have originally been in exactly the same position are separated. The vertices and edges of the tearing strip are moved away from their ‘twin’ vertices and edges of an adjacent strip. Edges that stay in the same position, whilst twin vertices are moved away from them, should have a torn edge, because their exposed white fibres are facing the camera. However when it is this edge’s turn to tear, as the paper curls, the torn edge would turns to face away from the camera, so is eventually not seen. The edges, which move away from their twin edges, which lay flat, have their exposed white fibres initially facing away from the camera so they are not seen. As the paper curls, however, the exposed white fibres turn to face the camera and become visible. This is the basis for which edges need to be detected and when.

6.4 Double sided shader

A double sided shader is needed for the piece as the surface is only one face thick, and each side needed a different texture on it. A double sided shader, would also solve a few problems with the torn edges as the exposed white fibres only lie on one side of a strip of paper. The shading network used to create a double sided shader is given below in figure 17.

[image: image32.png]
Figure 17
Every surface in Maya has a surface normal. This normal allows us to label sides of a surface. The double sided shader samples the surface normal of the area being rendered. If the normal is facing the camera it will render colour one. If the surface normal is not facing the camera it will render colour two. This operation is performed using the condition node.

Part of the problem of displaying the torn edges, is that the exposed white fibres only appear on one side of a torn strip. Using a double sided shader would solve this problem. Once the paper is torn it could be assigned a file texture on the correct side, which would display a white line representing the torn white edge. As it is a double sided shader, once the paper turns and the face faces away from the camera the other side of the surface is displayed, which could be black. The only problem with this, is that for the surface which does not move, its surface must originally be one texture (black), and then as the adjacent strip of paper is torn away from it, its texture must change to another texture (file texture of torn white lines). This problem is illustrated in figure 15.

A breakdown of the problem is; if a vertex moves away from it’s ‘twin’ vertex (a vertex, on an adjacent object whose original position is exactly the same as it), then the faces which have the “twin” vertex as a component should be textured with the file texture of the torn white edge. To break the problem down even further deduces that if a vertex, with a “twin” vertex moves at all in the z direction, then the appropriate face should be shaded with the file texture. The next subsection discusses how this solution could be implemented.

6.5 Implementation of torn edge detection

One way to achieve the above problem is to shade the whole sheet of paper using a double sided shader. The side facing away from the camera is shaded with a file texture, which is black apart from the white torn edges. The texture is mapped in the correct position, and the other side, which is facing the camera, is black. As a strip of paper is torn, the face normals of the bottom strip could be flipped, for the faces, which should show a white line. This can be achieved by animating the face normals flipping, when the rip appears.

[image: image33.jpg] [image: image34.jpg]
Figure 18
Animating the face normals, cannot be done using the Maya interface. This can be achieved using Mel script commands. In order to see the normals flipping in the work view, the surface normals must be displayed. This can be done by going to display>custom polygon display>options, and placing a tick in the ‘face normals’ check box.

To be able to animate the face normals flipping, a polynormal shape must be made. This is achieved by selecting a face and going to Edit Polygons> Normals> Reverse. This will create a polynormal1 node attached to the shape. The number written after the polynormal is used to distinguish it from other polynormals and refers to the order in which they were created.

The polynormal has only two attributes, the ‘Normal Mode’ and the ‘Node state’. Both can be changed in the attribute editor using a drop down selection box. It is possible to key the ‘Normal Mode’ attribute using the channels box. When the ‘normal mode’ is on ‘reverse’, the normals, which were used to create the ‘polynormal’, are reversed. In order to make them not reversed, the ‘Normal mode’ attribute can be set to ‘conform’. This would animate them flipping, however, when one polynormal ‘Normal Mode’ is set to ‘conform’ it will conform all the normals on the whole shape to one direction not just the normals which were selected to create the ‘polynormal’. Therefore if a lot of ‘polynormal’ shapes were to be animated flipping in sequence, this method would not work.

[image: image35.jpg] [image: image36.jpg]
Figure 19

Figure 20
The ‘Node State’ attribute, however, is a great deal more useful as it can be set to either ‘normal’ or ‘Has no effect’. Lets say the ‘Normal mode’ is permanently set to ‘reverse’, and the ‘Node state’ is set to ‘normal’, then the normals for that ‘polynormal’ will be reversed (figure 19). If the ‘Node State’ is changed to ‘Has no effect’ then the normals will not be reversed just for that ‘polynormal’ (figure 20). However, the ‘Node state’ attribute is not keyable in the channels box, or using ‘s’. It can be keyed using the following Mel command.

setKeyframe "polyNormal1.nodeState";

The following Mel command sets the node state to ‘Has no effect’.

setAttr polyNormal1.nodeState 1;

The following Mel command sets the node state to ‘Normal’.

setAttr polyNormal1.nodeState 0;

Animating the surface normals flipping is a rather time consuming process. After the polynormals have been animated, if the animation of the paper ripping is altered for any reason, the animation for the polnormals would need to be altered to match it.

This process can be made easier if a link is made between the moving vertices of one strip, with the appropriate face and polynormal of another strip. There are two methods, which can achieve this. The simplest method can be used only if the animation is produced using cloth as described in section 5. The more complicated method can be used when using any method in Maya to produce the animation.

When using cloth the animation of the cloth tearing is driven by constraint weights, going from 0 to 1. There are sequences of mesh constraints on a strip, which hold the strip flat. As a strip is torn away from the rest of the paper the mesh constraint weights go from 1, to 0. When the constraint weight is 0 the constraint has no effect and the vertices will move from their original position. Therefore if we connect the ‘mesh constraint’ ‘constraint weight’ attribute to the appropriate ‘polynormal’ ‘Node state’ attribute, when the ‘constraint weight’ is 1,

the ‘Node State’ is 1. So when the constraint works and the vertices are in their original position and the paper is not torn, the node state will be on ‘Has no effect’. So the polynormal will not be reversed when the paper is not torn. When the constraint weight is set to 0, and the vertices can move, the paper tears and the polynormal node state is changed to 0 and so the normals will be reversed. Since both values are Booleans and they match up nicely, this can be done using the connection editor. Once this connection is set up the animation of paper can be changed and the polynormals, will follow this animation.

When using blendshapes, or bones however, the paper is not animated using constraints. The link must be made between the z positions of the moving vertex to the polynormal of the effected face. Since the z position of the moving vertex is not a Boolean value, this cannot be done using the connection editor. The link must be made using an expression. The following expression will change the node state of the polynormal to 1 when the z position of the vertice is in its original position. When the z position of the vertex is not in it’s original position the polynormal node state will be changed to 0, hence, the normal will be reversed.

float $spz = "0.8253752";

int $state;

string $vertex = "paper1.vtx[160]";

//check position of vertex

float $position[] = `xform -q -ws -t $vertex`;

float $px = $position[0];

float $py = $position[1];

float $pz = $position[2];

//if position has moved normal

if (int ($pz*1000) == int ($spz*1000))

{

$state = 1;

}

//else has no effect

else

{

$state = 0;

}

setAttr polyNormal1.nodeState $state;

Both these methods still require a lot of manual work to be done, in order to make the links. First all the appropriate polynormal shapes must be made, and then each shape linked either using the connection editor, or the expression editor to the appropriate attribute. Relieving some of this manual work can be accomplished by creating tools.

The tools being proposed here are buttons, which could be pressed when the appropriate face and vertex/constraint are selected. The buttons would perform a Mel procedure that would reverse the surface normals of the face, creating a ‘polynormal’. It would then depending on which tool is used do one of the following; create a connection between selected constraints ‘constraint weight’ attribute and the ‘node state’ attribute of the polynormal or in the case of selecting vertices and faces it would create an expression which would allow the movement of the selected vertex to effect the ‘node state’ attribute of the polynormal which had just been made. The Mel scripts for these two tools in given in Appendix C, and heavily annotated. Demonstrations of these tools are given in Appendix B (Demonstration_clothtool.avi and Demonstration_bonestool.avi).

[image: image37.jpg] [image: image38.jpg]
Figure 21
[image: image39.jpg] [image: image40.jpg]
Figure 22
7. Analysis & Conclusions

This paper has derived various methods for producing the animation of paper tearing. The most promising results have come from the area of 3D animation.

When deciding which approach is most suitable for producing the animation, one needs to take into account the set up before the animation takes place, the method by which animation is achieved, flexibility, time and most importantly the finished product.

Setting up blend shapes prior to animation, although the process of creating a blendshape is simple, involves a fair amount of modelling to be done. This is because there would need to be numerous blend shapes made for each strip of paper. Blendshapes would also need careful planning of how each strip of paper would curl. When producing blendshapes reducing any stretch between adjacent vertices by eye would slow down the modelling process considerably. When using joints and cloth it is possible to avoid any stretching from occurring easily, by simply locking translate values on joints and setting the cloth’s resistance to stretching and shearing very high.

Creating joints and bones along the strips of paper is straightforward enough, however, there would need to be a high concentration of bones in order to allow the paper to curl smoothly. As part of the set up the paper strips must be skinned to the bones, this involves painting the weights of the bones on the paper. This process can be a little tedious especially with so many bones to paint. Cloth in comparison with joints and blendshapes is very easy to set up. The strips need to be converted to cloth, the sequences of mesh constraints needs to made, along with a collision object and a couple of translate constraints on the corners. Then cloth is ready to animate.

Animating Blendshapes using sliders is very simple. Only one or two sliders will effect a blendshape at anyone time, this means that only a few sliders will need to be keyed at anyone time. Joints and Bones are not as simple to animate. When using forward kinematics all the bones must be animated each time a new bone begins to curl, to straighten the strip out in the correct direction so that it doesn’t curl in on itself. A sequence of IK’s on each strip could be a solution to this problem, this would be an interesting avenue to explore in the future. Animating cloth, in comparison is incredibly simple the translate constraint locator is animated to pull the strip down, as the strip is pulled down mesh constraints are released, to allow the paper to tear. The rest is all simulated. This would be the ideal solution if it wasn’t for the amount of time that the simulation takes to solve. With all the mesh constraints on the cloth and the extreme values for it’s properties, to make it act more like paper there are a lot of forces acting on the cloth which need to be calculated. This disruption to workflow when animating can be quite frustrating. Judging the key framing of the animation is also difficult as the results can not be viewed immediately.

Another downside to cloth is the lack of control over each vertex, by simulating cloth a lot of detail to the animation is added. Sometimes cloth can behave in unexpected ways, trying to solve problems such as intersection is very difficult. Blendshapes on the other hand give the animator complete control over the placement of every vertex, this does mean however that the animator has to do all modelling the work, as described earlier. Joints and bones maintain a good degree of control over the animation.

The results of the tests done with blendshapes, bones and cloth(Appendix B: Tool_edge_composites) although, quite similar showed various traits that each method would produce. The test using blendshapes is perhaps too rigid in it’s motion and appearance. More effort would need to be put into modelling the blendshape, to make them less severe. Using joints, produced a rather jerky motion effect, which suits the motion of ripping paper well. There is also a bit more deformation on the surface of the paper once it has torn in comparison with the blendshape test. The cloth test rips ‘scrappily’ at the edges, which is quite reflective of paper tearing. The motion of the cloth, however, is slightly too fluid, its movements need to become more rigid. The Cloth test also appears too light, by experimenting with the density attribute in the properties this could be resolved. With a higher concentration of mesh constraints, and more tweaking of the properties, cloth could probably be made to behave more like paper.

The results of tests using, the tools proposed in section 6.5 and a double sided shader revealed the edges to be drawn in the correct places. Another benefit of this solution is that by using a texture to display the edges, it is possible to use the torn edge filter on the texture rather than as 2D process. Doing a batch process of a torn edge filter on a sequence of edge detected images produces inconsistent results. The torn edges the appear to move, which is very unnatural (Appendix B:edge_detection_tests, post_processing_filter). By using the torn edge filter on the texture, this inconsistency is avoided. However the sharp edges are crisp edges of the paper are not as eroded as they would be using the filter as a post-process. This could be improved upon by investigating into changing the alpha the edge when torn, so a more irregular edge is rendered. The process of using these tools is still fairly manual, a system by which the connections could be made automatically would be useful to develop.

7.1Conclusions

This paper has investigated into the technicalities of animating paper tearing, and proposed methods various methods. Through analysis of these methods it has been derived that using joints and bones would be the best solution to the animation at this stage. This is because when using bones you can retain a good degree of control over the results, stretching of the surface can be avoided, animation is interactive and instantaneous and bones produced the best results. The test animation using bones moved like tearing paper and had naturally sufficient deformation detail appearing on the surface when torn. Further work could be also be done to improve the animation process, by doing experiments with Ik’s on the bones.

However, if solutions were found to make ‘cloth’ react more like paper, and developments were made to make the simulation process quicker. Cloth would be the best option for the animation.

Methods for a new creating the appearance of a torn edge have been proposed. Whilst the methods still require a certain amount of manual input, they non the less offer a new solution to the problem, that once set up work effectively.

References

1. Eitan Grinspun Caltech, Anvil N.Hirani Caltech, Mathieau Desbrun USB and Peter Schroder Caltech, “Discrete Shells”, SIGGRAPH symposium on Computer animation (2003).

2. Demetri Terzopoulos, John Platt, Alan Barr and Kurt Fleischer “Elasticallly Deformable Models”, SIGGRAPH ’87, Anaheim.

3. David E.Breen, Sean Mauch, Ross T.Whitaker and Jia Mao, “3D Metamorphosis between different types if Geometric Models “, EUROGRAPHICS 2001.

4. Andrew P.Witkin, Paul S.Heckbert, “Using Particles to Sample and Control Implicit Surfaces”, Department of Computer Science Carneige Mellon University.

5. Rory Hunter, tutorial at www.fenriz.org.

6. Daniel Teece “Ink Line Rendering for Film Production” SIGGRAPH 2003

7. Amy Gooch, Bruce Gooch, Peter Shirley and Elaine Cohen “A Non-Photorealistic Lighting Model For Automatic Technical Iiustrations” SIGGRAPH 98

8. David Baraff, Andrew Witkin“Large steps in Cloth Simulation” SIGGRAPH 98

Appendix A – Concept for Animation

The piece begins with filmed footage of a mans face which fills the majority of the screen. The face looks at the camera, breathing gently until he notices that the top left side of the screen is beginning to peel. The screen peels as if the image on screen was printed on a magazine page. As the strip of paper peels towards the mouth, the man watches it curiously. When the paper is close enough the man reaches using his mouth to grab the paper. He then chews the strip of paper ripping it towards his mouth. As this happens other strips of paper,

begin to peel. The mouth eventually eats all of these strips, until he has consumed himself.

Appendix B – CD Tools and Tests

Tool 1: Tool_reverse_connect

Tool 2: Tool_reverse_expression

Demonstration of Tool 1: Demonstration_connection_tool

Demonstration of Tool 2: Demonstration_expression_tool

Various tests:-

Lambert shaded tearing tests

Cloth tests

Double sided texture tests

Existing edge detection tests

Tool tests

Tool tests composited

Report: Innovations_report.doc

Appendix C – Mel script for designed tools

Tool one

//--

//Description: This script flips the normals of the selected faces, creating a polynormalshape.

//then it connects the weight of the selected mesh constraint to the node state of polnormalshape.

global proc flip_connect()

{

string $selectedconstraint[] = `ls -sl -type transform`;

string $selectedfaces[] = `ls -sl -fl -type float3`;

string $pnnode[] = `polyNormal -normalMode 0 -ch 1 $selectedfaces`;

connectAttr ($selectedconstraint[0]+".constraintWeight") ($pnnode[0]+".nodeState");

}

// Description: This script creates a custom button which

// creates a reverse polynormal from selected faces loads the new polnormalshape into global variable and connects the nodestate of the created polynormal to the constraintweight of the mesh constraint

// -----------------

global proc createtool_connect()

{

window -title "flip normals and connect to contraint" -widthHeight 200 100;

columnLayout;

button -label "flip connect" -command "flip_connect";

showWindow;

}

createtool_connect;

Tool Two

//--

//Description: This script flips the normals of the selected faces, creating a //polynormalshape. Then it produces an expression which controls the flipped //normals using the position of the selected vetex.

global proc flip_expression()

{

//must select vertice before face

string $selected[] = `ls -sl -fl -type float3`;

//print $selected[0];

//print $selected[1];

string $selected_vertex = $selected[0];

string $selected_faces = $selected[1];

string $pnnode[] = `polyNormal -normalMode 0 -ch 1 $selected_faces`;

select -r paper1 ;

expression -s ("float $spz = \"0.8253752\";\nint $state;\n\nstring $vertex = \""+ $selected_vertex + "\";\n\n//check position of vertex\n\nfloat $position[] = `xform -q -ws -t $vertex`;\n\nfloat $px = $position[0];\nfloat $py = $position[1];\nfloat $pz = $position[2];\n\nif (int ($pz*1000) == int ($spz*1000))\n\n\t{\n\t$state = 1;\n\t}\nelse \n\t{\n\t$state = 0;\n\t}\nsetAttr "+ $pnnode[0]+ ".nodeState $state;") -o paper1 -ae 1 -uc all ;

}

//---

// Description: This script creates a custom button that creates a reverse polynormal from selected faces loads the new polnormalshape into global variable. Then it produces an expression which controls the flipped normals using the position of the selected vetex.

// ---

global proc createtool_expression()

{

window -title "flip normals and create expression" -widthHeight 200 100;

columnLayout;

button -label "flip expression" -command "flip_expression";

showWindow;

}

createtool_expression;

PAGE
2
Helen Arntsen Investigation into the technicalities of producing the animation of tearing paper

