
Andy Cosgrove Innovations Report 29/10/2009

 - 1 -

Abstract

Documentation on Asset creation for next generation computer game engines

Detailing the processes and software workflows to create a complete digital asset

(character) and port it to the Unreal 3 engine

The possibility of my concept will appeal to anyone with a little bit of knowledge about

3d packages and an affinity for games.

More importantly however is the fun aspect of personalising your game. This has been

approached previously in a small way such as inserting own logos in “Half-life” etc., but

my notion would enable greater recognition and an enhanced user experience.

Introduction

I wanted to find out more about a “next gen” game engine and how to get my own

content into them.

Also because I haven’t seen it done much before, would be an appealing challenge.

I decided to look at Unreal Tournament because a previous version of the engine had

been widely used and I also knew the sdk would be included from website. Plus I

believed there would be tutorials on how to use it, in the collector’s edition. As stated on

their website.

In addition I have personally enjoyed previous versions and thoroughly liked the demo.

Another reason for choosing Unreal was that it already has a large online community in

forums and 3
rd

 party websites.

What is “next Gen?”

Next generation is the latest generation of directX10 games. Also the latest Computer

Game consoles such as the Xbox 360 and Playstation 3.

What challenges I set myself

I planned to learn how to import a character and textures into the unreal engine editor.

Then learn how the editor and included plug-in’s work.

Afterwards model and texture from photo reference and sketches, a character in a

modular way, similar to that of current Unreal characters. Theoretically enabling the user

to mix and match current characters with the new one.

The main priority will be getting the new character and possibly depending on time, a

new environment (based on a reconstruction of the Talbot campus) working in game.

Andy Cosgrove Innovations Report 29/10/2009

 - 2 -

How /Why I cut down the scale of the project.

After buying the collectors addition of the game, all of the bonus tutorials where on

making levels there were no tutorials on creating characters.

So I decided to keep the scope of the project to a character only.

 I thought it would have been good to create my own map, from the experience of the

process involved… however decided to do a character because it is more of a challenge.

In addition I thought I could learn more by working it out for myself.

How I did – the results
I’m really pleased with my success in achieving the insertion of my digital asset into the

“Unreal3” game engine. In addition, I believe the character was a recognizable

approximation of my appearance. Also my asset is fully compatible with existing

characters and components in unreal tournament.

While the character works I feel that more time could have been spent on creating a

slightly more detailed body mesh and higher detailed normal map.

The Documentation or “how to” portion of this report is split into 2 sections the first

involving the workflow for creating a useable digital asset. This is using programs that

the reader should have a basic understanding of. Therefore some topics will only be

talked about briefly. However I still cover this part of the workflow for the sake of

thoroughness.

The second section entails the workflow of getting the finished digital asset from Maya

and into Unreal Tournament proper. Mostly using the development kit program

“UnrealEd version 3.0” and “Notepad” though any text editor will do.

Design and planning the implementation of character

 Quote of interested gamer... “Wouldn’t it be great if you could recognise a friend

by their own personal game character”?

This would make the game more immersive

 What should it look like? Up to you. I decided to try and make my character

resemble myself, but not look completely out of place in the game. … However if

you want your own animation / radically different character there are certain

restrictions that will effect your decisions (see below).

Andy Cosgrove Innovations Report 29/10/2009

 - 3 -

After doing initial research from searching UDN developer forums, emailing epic

and just playing about with “UnrealEd” opening existing packages and

investigating how they work. I found out the following.

Restriction’s, if I wanted to use the pre-made animations I would need either a copy of

their skeleton, or a similar one with the same naming conventions. So the rotations work

correctly.

In addition I found that I would need numerous texture maps for the head and body in a

2048x2048 resolution, such as diffuse, normal, specular and emissive maps.

I also found out that the optimal character should only have about a 3000 polygons or

6000 triangle limit for the game to handle it efficiently. It is possible to use more than

this, but it isn’t advisable. Considering This I decided to put the most detail into the head

model, because I thought it was the most important part.

Part 1

Workflow involving “Maya”, Photoshop /Gimp and possibly Zbrush and Headus-

uvlayout.

Note some illustrations may show the “unreal editor” as a reference but will be covered

in greater detail in part 2

Before anything is done in Maya an important setting must be changed. The default

world Coordinate UP axis in Maya is the Y axis. Whereas the default “Up” axis in the

unreal-engine is the Z axis. Mayas default can be changed by going to the animation

preferences menu and selecting these settings:

I created a skeleton from approximating the imported 3dstudiomax file. (This was

supplied by Epic games, on the UDN website). By seeing what they had and getting as

close to it as possible. As shown below.

Andy Cosgrove Innovations Report 29/10/2009

 - 4 -

 I also had to take into account that as the skeleton is exported to “Unreal” the local

rotation axes of the joints are reflected about the y axis. To get this working it involved a

lot of trial and error. Exporting and importing the skeleton until it worked to a

satisfactory level.

To save time I have included a .ma file that contains this working basic skeleton which

would save others from having to create it from scratch again. I kept the same number of

bones in my skeleton with identical naming conventions. However it turns out while the

naming convention is important the number of bones is not. The bones labelled handIK

are in-fact unnecessary when using Maya. I left them in just so that the view in the

unreal editor would be visually similar and therefore easier for me to comprehend.

Imported

3d Mesh

My Maya

Joint

Chain

3d

Skeleton

Andy Cosgrove Innovations Report 29/10/2009

 - 5 -

*illustration shows the character and skeleton that was provided by Midway on the left

and the skeleton and character head that I created on the left. The white lines depict the

skeleton bones and the coloured axes denote the individual joints rotation axes. It was

extremely important that these were made to be identical. Otherwise I wouldn’t have

been able to use the existing animations and would have had to do the 128 or so separate

animation takes for my character, again from scratch myself.

Modelling
It helps if you have good reference images and or model sheets to work from. However

in this case it is beneficial to model your character to the skeleton, rather than creating a

skeleton, or modifying the skeleton to fit your character. Or basically make sure your

model sheets are scaled to the size of the skeleton that has been created earlier.

*the picture shows the Maya interface and the front and side views of my model.

Building up the head mesh using a polygon proxy on a subdivision surface. Extending

out from the brow of the nose outwards and creating the eyes and mouth. The rest of the

head model is then extruded out from these details. When the model looks satisfactory, it

then needs to be converted into polygons for later.

*picture is illustrating the finished head model with clean topology and basic skin colour.

Andy Cosgrove Innovations Report 29/10/2009

 - 6 -

Since I had the head modelled to a satisfactory level I began to model a basic body shape

trying to keep the proportions similar to the existing “unreal” model. I create and work on

half of the object then mirror it, to create a full mesh faster.

UV layout

It’s important to get the UV regions of different parts of the model in the correct place;

otherwise this could create problems further down the line. Such as when trying to

integrate parts of your digital asset with the pre-made in game parts such as helmets and

goggles etc. Keeping your models simple will greatly speed up this process as this will

make flattening the Uv maps a lot easier. I find that some 3
rd

 party applications such as

Headus Uv layout can help to layout Uvs more efficiently than the built in tools in Maya.

The illustration below is of the Headus UV Layout program, It shows the interface and

the ease in which the model can be separated into the correct parts, to make more

comprehensible uv layouts / texture maps

This illustration shows How I began to

block out the model, keeping the polygon

count down. The other half is created

from a mirror image so it keeps it

symmetrical. Also shows the Skeleton that

the model needs to be fitted too.

Andy Cosgrove Innovations Report 29/10/2009

 - 7 -

Here is how I laid out my characters uvs in Maya.

As you can see each coloured section on the map corresponds to certain body parts.

I did this for 1 side of the model then mirrored it so both side share the same UV space.

This is done to make the textures more efficient. However in for objects such as the torso

and head it’s a better idea to layout the uvs for the entire object

Andy Cosgrove Innovations Report 29/10/2009

 - 8 -

This picture shows the head uv layout, the hair geometry is a collection of quads with a

texture mapped onto them. The uv coordinates of the hair are in part of the helmet

section because one of the default unreal characters had a similar arrangement.

Texturing

Since I laid out the uv’s earlier I used this as a basis to create textures for the character.

This is done by using the UVSnapshot Tool in the UV Texture Editor in Maya.

To keep things straightforward making the size is 2048 x 2048 and saved as a .tiff file.

Texturing the body.

Now I wanted a military feel to my character, so I found an example camouflage picture

and used it as reference for the main colour I Also used references images for the vest

and boots. I would usually take a lot more time and make much higher detailed texture.

However at this point I was unsure if I could complete the whole project in the

timeframe. I also believed as long as I managed to get the head and face to a good

likeness that would be enough. Therefore I left it at this level of detail. I can always go

back and work more detail into the body texture at a later date.

Andy Cosgrove Innovations Report 29/10/2009

 - 9 -

Once this step was completed I then used the original head reference images in

conjunction with the UV-snapshots from Maya to create the head hair and eye textures.

As shown. Once you have created a texture save it as a TGA image file of dimensions

2048x 2048

Normal Mapping

This step isn’t essential, so if you want to just get a basic model into unreal you can skip

it entirely. However it can be fundamental in getting models that look of a very high

quality, working within the “Unreal” engine.

What is Normal mapping?

Quoted reference for Normal Mapping taken from wikipedia.org

“…normal mapping is an application of the technique known as bump mapping. While

bump mapping perturbs the existing normal (the way the surface is facing) of a model,

normal mapping replaces the normal entirely. Like bump mapping, it is used to add

details to shading without using more polygons. But where a bump map is usually

calculated based on a single-channel (interpreted as grayscale) image, the source for the

normal’s in normal mapping is usually a multi-channel image (x, y and z channels)

derived from a set of more detailed versions of the objects. The values of each channel

usually represent the xyz coordinates of the normal in the point corresponding to that

Texel…”

I used “Zbrush3.0” to create my Normal map. I have found that while certainly not being

the easiest way to do so. If done correctly it can achieve the most detail as an end result.

(Zbrush can handle over 1Million polygons on a single mesh. I subdivided the standard

http://en.wikipedia.org/wiki/Bump_mapping
http://en.wikipedia.org/wiki/Surface_normal
http://en.wikipedia.org/wiki/Shading
http://en.wikipedia.org/wiki/Polygonal_modeling
http://en.wikipedia.org/wiki/Grayscale
http://en.wikipedia.org/wiki/Texel_%28graphics%29

Andy Cosgrove Innovations Report 29/10/2009

 - 10 -

mesh from Maya up to around 650,000 polygons and then sculpted directly onto that

mesh.)

However if you do not have access to Zbrush there are many other ways to create normal

maps, such as: NVIDIA normal map filter for adobe Photoshop creates a normal map

from a diffuse texture... (Easiest but the least controllable/accurate). As shown below

 An additional way is to create a copy of your mesh in Maya and work much more detail

into it (more subdivisions). Then use the transfer maps tool in Maya.

Andy Cosgrove Innovations Report 29/10/2009

 - 11 -

 This creates a normal map from the high res mesh onto the low res object... (Slightly

more time consuming but can give a very good result with the correct settings.

*note using this method the ray-tracing calculations can take over an hour for a

2048x2048 map on high settings. Also Maya Does have a tendency to crash or be very

very slow, when the high res object is over 200,000 polygons. This obviously depends on

the specifications of your machine.)

Rigging the character

Select all joints of the skeleton and all of the geometry of the mesh and chose smooth

bind with the default settings. Then need to paint weights on the individual parts, so when

you move the skeleton it deforms the geometry correctly. For example the joints on the

arms only affect the arm geometry etc. I have to undo any joint rotations before tweaking

or changing the weighting of the mesh, because the “assume preferred angle” command

on the skeleton, will not work correctly. It was set the way when I created the skeleton

hierarchy and tweaked it, so it will work with the default “Unreal” character animations

(*the local rotation axes are not “frozen” or zeroed).

Image shows the Zbrush normal

map beside NVIDIA’s normal map

filter.

Both have their advantages but they

can also be blended together to

create an even better result

Andy Cosgrove Innovations Report 29/10/2009

 - 12 -

The above illustration shows an example of how to paint weights correctly on the chest

and arm of my character.

If you just want to use the default animations that are in the game engine already. Then

there is no need to add IK controls or constraints, the given skeleton just has to move the

mesh in the desired way from rotational information only.

 It is a good idea to thoroughly test it before exporting; this saves a great deal of time

later. Hence you don’t have to re-export everything from “Maya” and re-import

everything back into “UnrealEd” more than once. Which I unfortunately had to do on

numerous occasions...

Exporting the finished character

Now the finished asset has to be exported from Maya into a format the Unreal Editor can

understand. To help with this thankfully there is a plug-in for Maya to handle this. It is

called the actorX plug-in and is also available from the UDN developer website. The

actor X plug-in has to be activated like any other in the settings and preferences menu in

Maya. Once it’s been activated, the Mel command “axmain” will run the main actor x

script. Before you run the main command its worth running “axoptions” make sure these

settings are enabled.

Andy Cosgrove Innovations Report 29/10/2009

 - 13 -

Because of the way that the ActorX plug-in works with Maya 8.5, it is necessary to

delete all the objects bar the skeleton and the individual part that you require. **Before

deleting anything. Save a separate copy of the scene file, to refer back to. This enables us

to have separate body “parts” in game, which can be used in conjunction with the default

parts that are already included in game. It is possible to skip this step and just export the

entire mesh at once. However you wouldn’t get the same integration with default parts.

This illustration shows the correct settings for the “axoptions”

command.

“all skin-type” basically means it exports any mesh that is

rigged to a skeletal chain.

The automatic triangulate is very important if you have

modelled your character using quads (4 sided polygons)

because the unreal engine needs triangulated meshes to work

correctly and will produce an error when trying to import a

mesh that has polygons of 4 sides or more. You may want to

triangulate the mesh yourself to produce a better result.

Unfortunately the “cull unused dummies” and “cull root

dummy” options do not work for Maya 8.5. This makes the

next step slightly more time consuming, but not terribly so.

Andy Cosgrove Innovations Report 29/10/2009

 - 14 -

Illustration shows how to export the

hands and arms. By deleting the other

parts. Naming the parts

[packageName]_Arms.

Then click the “save mesh/refpose”

Button

I saved the parts to a separate folder to

keep things simple

Illustration shows how to export the torso with name [pakagename]_Torso01

And how to export the legs with the name [packageName]_Legs01

Andy Cosgrove Innovations Report 29/10/2009

 - 15 -

I had to repeat the previous steps numerous times, before I managed to get to the final

result.

The naming conventions are important but not essential to making it work. It just makes

scripting and general use with high numbers of parts easier to comprehend.

Hopefully this report will help anyone else with doing the something similar, with ease.

End of part1

Illustration shows how to export the Boots with name

[pakagename]_Boots01

And how to export the head with the name

[packageName]_Head01

Illustration shows how to export the Left shoulderpad with

name [packageName]_L_ShoPad01

The same also has to be done for the right shoulder pad its

name should read [packageName]_R_Shopad01

Andy Cosgrove Innovations Report 29/10/2009

 - 16 -

Part 2 UNREAL workflow

Open the Unreal editor by default for windows users it should be in: start->all programs -

> unreal Tournament 3 -> unreal tournament editor

Welcome to the main unreal editor, for creating custom levels this is your main interface.

However while creating a character you actually won’t be using this interface screen at

all really. Firstly what needs to be done is to open the generic browser window. In view

menu -> Browser Windows -> generic

Making a new package

The unreal engine works on packages; these are basically collections of assets for

example textures models and code etc.

So here is how to create your container package.

Also this shows how to create the first material for our character.

This illustration shows the Generic browser window and the new package dialogue

In the New package dialogue Type in your new package name in my case it was

“Commando”. Under groups the new group should be called “Materials” The name

should be MIC_[packageName]_Body_V01

Andy Cosgrove Innovations Report 29/10/2009

 - 17 -

The Factory type should be set to Material Instance Constant. (MIC for short). This is the

shader/material for the objects like in the hypershade in Maya; it contains instructions to

display textures.

When ok is clicked, you get a new swatch in the generic browser, Double click on the

new MIC to display the “material instance editor”

Since this MIC is new. It is completely blank, it displays the default grey checker texture,

but since the MIC is blank. It has no instructions to display textures or other functions.

Now there is no reason to “re-invent the wheel” by setting these instructions up from

scratch. They can be inherited from a Base MIC class (that the nice people at Midway

have provided)

By setting the Base MIC as a parent, our MIC will inherit all the instructions and base

textures

So in the blue section above we need it to read the location of the BASE MIC.

So while leaving this editor window open, in the Generic browser window, select the

CH_ALL package as in the picture below. Numerous MIC will be visible. Since my

characters Skeleton is of the IRONGUARD_MALE makes sense to use the

MI_CH_ALL_IRONG_BASE Material. Select it by clicking it once. So it will

highlight as in the picture.

Andy Cosgrove Innovations Report 29/10/2009

 - 18 -

Now in the Material Instance editor that is open select the “use current selection in

browser key” as shown below.

Our Mic will turn black (because we haven’t applied a texture yet!). It will also state that

our MIC now has some instructions.

This is the base material

MI_CH_ALL_IRONG_BASE

It should be highlighted as

shown.

This is the package list, most of

the packages that are used in the

game can be found here.

The base material we are

looking for is in the CH_ALL

Package.

Andy Cosgrove Innovations Report 29/10/2009

 - 19 -

Importing textures

Now the textures that were created in Photoshop earlier need to be imported.

To do this select our package, “commando” in my case and in the file menu select import.

The following dialogue box should appear.

Select all the created textures diffuse, emissive, specular, opacity and normal for both the

head and body if you have them.

I added my specular map after this picture was taken, so it isn’t imperative to have

everything at this point, its possible add things later, it just makes sense to import them

all at once to save time.

Once they are opened the Import dialogue box will open. As shown below

Andy Cosgrove Innovations Report 29/10/2009

 - 20 -

The package name should read the package you want to import into. The group should be

material. However groups are just to organise things, for our benefit but their names will

make a difference later, when scripting. The name should be identical to the texture

name. The LOD Group should be TEXTUREGROUP_Character for diffuse,

TEXTUREGROUP_CharacterNormal for normal maps and so on.

Once the ok button is clicked the “Unreal ed” takes our TGA textures and converts them

into a proprietary format that the engine can read. This process can take quite some time

especially with large numbers of textures.

Andy Cosgrove Innovations Report 29/10/2009

 - 21 -

Once they are loaded the textures should show up in the Generic browser in red boxes

with a name and beneath it should read steamed 2048x 2048 [DXT10] as depicted below.

Now we have to add these textures to Our MIC we created earlier. Since we created the

MIC for the Body we need to highlight the body texture in the generic browser window

as shown.

Andy Cosgrove Innovations Report 29/10/2009

 - 22 -

Then in the Material instance editor window, for our body MIC as shown below, go to

the Texture parameter values tab on the left. And expand it.

There are now numerous channels displayed with joining tick-boxes. Select the diffuse

check box. Then select the “use selection from browser” button, the small green arrow as

shown in the boxed area in the above picture.

This will add our Body diffuse texture to our Body Material as shown on the picture

below.

Andy Cosgrove Innovations Report 29/10/2009

 - 23 -

Illustration above shows the Commando_Body material with the diffuse texture applied

to it.

Now this process has to be repeated for all of the textures that were imported.

So the Normal Map should be connected to the Char_Normal attribute. The specular map

for the Char_specular attribute and so on.

You can view the texture/material differently by using the swatch type tabs at the top of

the editor.(shown in the red box, in the picture below.)

If you have an “emissive” texture. Connect it to the Char_emissive channel. The next

image shows how to get it to work correctly. An Emissive texture is just a black and

white solid colour image that depicts areas on the material that “glow” or have an

emissive light and colour. So it’s basically painting a small light onto your model.

Andy Cosgrove Innovations Report 29/10/2009

 - 24 -

This illustration shows an example emissive texture. At first the material will glow a very

solid bright white colour. To edit this expand the VectorParameterValues tab in the

Material Instance editor. (Depicted in the blue box above)

Then select the Char_emissive_Color channel check box and expand the tab. This will

provide Red, green, Blue and alpha values for the emission. Reducing the alpha will

make the glow less intense and the diffuse texture underneath more visible. Changing the

Colour values will change the emission colour, as in the picture above.

This should finish the work on our first material for the body. However we still need

materials for a blue version, a red version and a material for the head.

Rather than re-creating more MIC’s from scratch the one we just made can be duplicated

and renamed by right clicking on our material swatch in the generic browser, and

selecting duplicate. Then right click on the copy and select rename. Rename this new

MIC to “MIC_[packageName]_Body_VBlue” then duplicate it again and rename to

“MIC_[packageName]_Body_VRed” then one last time and rename it:

“MIC_[packageName]_Head”

As shown in the picture below.

Andy Cosgrove Innovations Report 29/10/2009

 - 25 -

Now swap the diffuse textures for the blue and red versions. Then if you haven’t already

import the head textures that were created earlier. Then connect them up into the correct

channels in the material instance editor for the Head MIC. So you end up with the picture

below.

The Char_TeamColor Channel should be enabled for the team colour materials to work

correctly.

This should conclude the work needed on materials.

Importing the Model/mesh

In the generic browser window go to file -> import Select all of the meshes, Arms, head,

legs, torso etc. As in the picture below.

Andy Cosgrove Innovations Report 29/10/2009

 - 26 -

When the import dialogue box appears make sure that the Package name is correct and

the group should be labelled “Parts” as shown below. Then click ok to all to import all of

the mesh parts.

*note in “unreal ed” there is no need to have the "assume Maya cords" box checked the

“actorX” plug-in already accounts for this.

The picture above shows the imported parts in the generic browser with the default

checker material applied. As shown I used the most polys in the head mesh because I

thought it to be the most important detail, to be able to recognise.

Andy Cosgrove Innovations Report 29/10/2009

 - 27 -

Double click on the “head” to open the Anim set editor.

Under the mesh tab open the materials tab and connect the Head MIC material into the

first channel marked [0] as shown in the picture below.

Andy Cosgrove Innovations Report 29/10/2009

 - 28 -

For the head mesh only for the game to calculate rotations correctly the head object’s

origin and rotation origin needs to be edited as in the picture above. The Z coordinate has

to be set to -51 and the Yaw has to be set to -90 degrees. This is for the head object only.

Then all of the other parts need to have the body MIC material applied to them in the

same way. Like the torso object in the picture below.

Once the objects have texture and the head object has been edited it possible to view the

animations by selecting the Anim tab, in the anim set editor. Then in the anim set drop

down box select K_AnimHuman_BaseMale[124]. Then chose any of the pre-made

animations. If the skeleton I provided was used and the previous instructions were

followed correctly, there shouldn’t be any problems with the animation playback. As

shown in the picture above.

Andy Cosgrove Innovations Report 29/10/2009

 - 29 -

Sockets

Sockets are basically locators that are affixed to geometry to inform the game engine of

certain interactive procedures. For example even thought the character has hands the

game engine doesn’t know where or how the character holds a weapon. So Sockets need

to be placed onto some of the parts, so that the character will work and interact with the

game environment properly.

The parts that need sockets are the torso, boots/feet and arms.

Starting with the torso add a socket by entering the socket manager from the anim set

editor ->mesh menu-> socket manager. As shown below.

Inside the socket manager select add new socket. A dialogue box will appear with a list

of the bones in our characters skeleton. Select b_neck. As shown below

Andy Cosgrove Innovations Report 29/10/2009

 - 30 -

Then it will ask for a Socket name Enter: HeadShotGoreSocket.

This socket is fixed to the top of the neck, so if the player is hit there it will register a

headshot and kill the player. Etc... *Note it could be counted as cheating if you move the

headshot socket somewhere else say 50 feet away from your character…

Using the on screen controls position the socket in a sensible place at the base of the

neck/head

Now select ok and close the anim set viewer.

Now for the arms, open the anim set viewer for the arms and the socket manager. The

arms need two sockets. One for each weapon hand. As shown below

Andy Cosgrove Innovations Report 29/10/2009

 - 31 -

Add a new socket affix he first to the b_rightHand joint, name the socket WeaponPoint.

If your character is right-handed. Then add the second socket and affix it to the

b_LeftHand joint. Name this socket DualWeaponPoint. The sockets will then have to be

moved visually to line up properly. Move and rotate the sockets to look like the image

above. X- Axis pointing in, z pointing out, Y pointing up. This step took me hours to get

the positioning just right. May have to come back to this step later after seeing the model

in unreal Tournament.

Now the boots need two Sockets. One named L_JB, affix that to the b_LeftAnkle joint.

The second Named R_JB and affix that to the right ankle joint.

Andy Cosgrove Innovations Report 29/10/2009

 - 32 -

Portrait Image

 To be able to display a portrait picture, need to import one. A 256x 256 will suffice.

So from the file menu select import and open a sufficient picture.

The head shot settings. The group should be “HeadShots”, the name [name]

Andy Cosgrove Innovations Report 29/10/2009

 - 33 -

Example headshot

Last thing is to save the package. To the folder below. Also depicted in the illustration

above.

C:\Documents and Settings\[User]\My Documents\My Games\Unreal Tournament

3\UTGame\Published\CookedPC\CustomChars

This only leaves the scripting component to do. So the game will “know” that it has a

new character available to use.

Andy Cosgrove Innovations Report 29/10/2009

 - 34 -

Scripting Component

The code in the appendix starting with the following line:

Parts=(Part=PART_Head,ObjectName="Commando.Parts.Commando_Head",PartID="0

A",FamilyID="IRNM")

Needs to be appended to the default UTCustomChar.ini which can be found in the

folder:

C:\Documents and Settings\[user]\My Documents\My Games\Unreal Tournament

3\UTGame\Config

The “Parts Head” bit speaks for itself, the Object name consists of

[packageName].[GroupName].[PartName]

PartID is to identify parts within a familyID. The FamilyID is the Faction ID Number for

example iron Guard or TwinSouls.

In Game ScreenShots

Evidence of the final asset working in game

Illustration shows portrait picture working in game.

Andy Cosgrove Innovations Report 29/10/2009

 - 35 -

Evidence of the final asset working in game

Screenshot from Unreal Tournament. Showing finished Character.

Screenshot showing character with Unreal tournament arms and boots. (Fully

interchangeable.)

Andy Cosgrove Innovations Report 29/10/2009

 - 36 -

Summary

If you failed to achieve your goal(s), why weren’t

they achieved?

The model and textures worked perfectly in the character select screen, and

inside the editor. However in-game, the transparency maps didn’t work

correctly for the characters hair. I could not figure out why this happened. I

believe more research into the opacity map settings would reveal it. I don’t

think this was too much of a problem, because I was being very ambitious in

creating hair for my character anyway. Most in-game characters didn’t have

hair, only helmets or texture of stubble.

Additionally I would have like to create my own level if I had time to do so,

for this project. I will continue to create one in my own time, for fun.

I’ve learned that I need to keep things simple, especially at the beginning

stages. It is very easy to model into the 1000’s of polygons, however this

makes laying out uvs much more difficult and time consuming and therefore

texturing and rigging become much more complex.

How would you do it differently if you did it again?

If I did it again, since I now know how to do everything. I would spend more

time modeling the torso and body parts, increase their level of detail. I would

also decrease the number of divisions in the head mesh and use vertex

normal’s to fake detail. Rather than having such a high polygon count. I

would also like to spend a lot longer on creating more detailed normal maps

using Zbrush and higher detailed diffuse textures for the body in Photoshop.

Other wise I wouldn’t really change my process of working. I planned

effectively as I could, with limited information and succeeded in creating a

finished asset.

Andy Cosgrove Innovations Report 29/10/2009

 - 37 -

Critical analysis of my work.

What I have learned in this project has changed how I create normal maps and has

enabled me to create better textures for my major project.

In addition I have made great progress in understanding how rigging and local rotations

of joint axes work. Also in completing this project with a low polygon count in mind, I

have learned a lot about using face and vertex normal’s to create a believable model but

using a much simpler mesh. This has really helped me keep my render times to a

minimum for my major project unit.

This unit has also taught me a lot about game engines and the numerous restrictions in

place to be able to use them. I believe by trying to explain my process has actually helped

me learn that much better. For example I had a few problems with team colours and

getting the right emissive colours to work properly, but I figured it out as I was writing

the report. So I decided to explain that part in as well.

I think that my specular, normal and diffuse maps could have been a lot better. I think in

game they don’t look quite right especially because I mirrored the normal map on some

parts which gives a noticeable seam. Which I was rather disappointed with. Given more

time to concentrate on these areas I think a more believable aesthetic can be achieved.

However I am quite pleased with the end result and the report because on numerous

occasions I was very unsure of success. I may have had to rush some areas to get the

project completed, but I managed to achieve my aims.

Given more time I’m confident I could create a character to an even more professional

standard. Unreal Tournament 2007 took 3 years to develop with an entire team working

on it. I’m Happy with what I managed to achieve in the relatively short space of time.

Andy Cosgrove Innovations Report 29/10/2009

 - 38 -

Appendix

This is a copy of an email sent to Mark Rein Head of Epic games, asking for more

information.

Date: Tue, 4 Dec 2007 00:09:31 +0000 (GMT)

From: "Andrew Cosgrove" <and.cos@btopenworld.com> Add to Address Book

Subject: UDN developer network

To: mrein@epicgames.com

Hello Sir.

My Name is Andy Cosgrove, I am a final year student at Bournemouth university In the

UK. I'm currently On the BA Computer Visualisation and animation course.

For my Innovations project I intend to create additional models for the unreal 3 engine

using Maya/Zbrush and Photoshop etc.

And have them working in unreal tournament 3.

To help with this goal I was wondering if it would be possible to gain access to the

"licence" area of the UDN development network. For more information on the unreal

editor, than is publicly available.

My tutor Stephen Bell Suggested I try contacting You/Epic games about this.

My tutor is also thinking of trying to setup a games course at our University.

If you would like to speak to him to discuss this or verify who I am. His email address is

SBell@bournemouth.ac.uk

Thank you for your time

Best regards

Andy Cosgrove

From: "Mark Rein" <Mark.Rein@epicgames.com> Add to Address Book

To: "'and.cos@btopenworld.com'" <and.cos@btopenworld.com>

Date: Mon, 3 Dec 2007 19:33:50 -0500

Subject: Re: UDN developer network

Andy,

Sorry but we can't provide you with access to that.

Mark Rein

Epic Games, Inc.

javascript:document.frmAddAddrs.submit()
javascript:document.frmAddAddrs.submit()

Andy Cosgrove Innovations Report 29/10/2009

 - 39 -

Visit us at www.epicgames.com

UTCustomChar.ini additions.

Copy of the code that is added to this script file to enable the character to work

Parts=(Part=PART_Torso,ObjectName="Commando.Parts.Commando_Torso01",PartID

="0A",FamilyID="IRNM")

Parts=(Part=PART_ShoPad,ObjectName="Commando.Parts.Commando_XShoPad01",P

artID="0A",FamilyID="IRNM")

Parts=(Part=PART_Arms,ObjectName="Commando.Parts.Commando_Arms",PartID="0

A",FamilyID="IRNM")

Parts=(Part=PART_Thighs,ObjectName="Commando.Parts.Commando_Legs",PartID="

0A",FamilyID="IRNM")

Parts=(Part=PART_Boots,ObjectName="Commando.Parts.Commando_Boots",PartID="

0A",FamilyID="IRNM")

Characters=(CharName="Coz",Description="Commandos Team Leader, Crazy as hell.

As in Wont Sleep or eat, Untill The Job is Done. Will happily jump off buildings like a

depressed lemming. Hows this for an innovations project??

",CharID="0A",bLocked="false",Faction="Ironguard",PreviewImageMarkup="<Images:

Commando.HeadShots.Commando_Coz>",CharData=(FamilyID="IRNM",HeadID="0A

",TorsoID="0A",ShoPadID="0A",bHasLeftShoPad=true,bHasRightShoPad=true,ArmsID

="0A",ThighsID="0A",BootsID="0A"))

Web References

[na]. 2008. ActorX plug-in for Maya 8.5.
[na]. Available from:
http://udn.epicgames.com/Two/ActorX.html. [Accessed 23rd
February 2008]

[na] 2008. Normal mapping definition
[na] Available from:
http://en.wikipedia.org/wiki/Normal_mapping. [Accessed 24th February 2008]

[na]. 2008. Unreal reference Skeletons. Available from:
http://udn.epicgames.com/Three/UT3Mods.html#Characters/ [Accessed
23rd February 2008

[na] 2007 Unreal wiki reference available from :
http://wiki.beyondunreal.com/wiki/Solid_Snake/ImportingSkeletalMeshesIntoRob
oBlitz [Accessed 23rd February 2008]

[na] 2007 Forum discussion on creating custom characters. Available from
http://utforums.epicgames.com/showthread.php?t=585728 [Accessed 23rd
February 2008]

http://en.wikipedia.org/wiki/Normal_mapping
http://wiki.beyondunreal.com/wiki/Solid_Snake/ImportingSkeletalMeshesIntoRoboBlitz
http://wiki.beyondunreal.com/wiki/Solid_Snake/ImportingSkeletalMeshesIntoRoboBlitz
http://utforums.epicgames.com/showthread.php?t=585728

