
Innovations Report
Georgios Cherouveim

The unknown nature of light.

Introduction

The purpose of this project is to study how light behaves in different time and space scales, as well
as in frequencies of the spectrum that are not visible to the human eye. There are optical
phenomena, such as Doppler shift, which humans can not easily observe because of the extremely
high speed of light. But as the technology of computer graphics has evolved over the last few
decades, it is possible to simulate and visualise some of those phenomena. In this report, the
practical techniques and the theory needed to simulate such phenomena in computer graphics is
presented. In one case, a detailed implementation is given for the Doppler shift. On the other hand, a
theoretical discussion explains the advantages and disadvantages of different ways to implement
simulations like bending of light near strong gravitational fields and also the delay of visual
perception because of the finite speed of light.

Doppler shift

The Doppler shift is the phenomenon when the pitch of a wave frequency changes because of the
relative speed between the source and the observer. This can take place to any kind of waves and
pulses, from sea waves, to the sounds and the electromagnetic radiation including the visible light. It
is named after the Australian mathematician Christian Andreas Doppler who was the first one who
to observe it. (ref 1)

If a source emits a frequency with a
fixed length A, but at the same time
it moves toward the observer with a
speed of A per frequency period, the
observer will perceive the wave as
having double the frequency. If the
light emits in the opposite direction
and away from the observer, the
perceived wave will have half the
frequency. The same applies if the
source is static but the observer is
moving, or even if both are moving.
All that matters is their relative
speed. So in general if the source
and the observer are getting closer,
the frequency increases and if they
are moving away the frequency
decreases. The faster the wave
travels, the less noticeable the shift
is and vice versa. (fig 1)

fig 1

The easiest way to perceive this shift is with sound. This is because it moves relatively slow. The
common example is with the ambulance's horn as it drives toward us and then away from us. We
first listen the horn sound in a higher pitch, then as it drives next to us we notice a change of the
shift for a while and then the sound's pitch becomes much lower. On the other hand the driver of the
ambulance hears the sound as it is produced from the speaker.

It gets more interesting when this phenomenon is applied to visible light. The change of frequency
in visible light means change in colour, because each colour is just a different frequency of the
visible electromagnetic spectrum. This is much harder to spot because light travels really fast for the
human time and space scale. Even though, this phenomenon is widely used by the astronomers to
calculate the distance of stars and other objects in space which are really far away and the classic
method of trigonometry using the different parallax cannot be applied. As the Universe expands, the
further a star is, the faster it moves away from us. So if the star emits a known radio wave spectrum
signature, the astronomers can measure the red shift and from that they can calculate its distance.
Another interesting aspect of this phenomenon is that invisible frequencies of radio wave spectrum
can become visible with the proper shift. So very distant objects like quasars, will show part of their
ultraviolet radiation as visible to the human eye colours.

Vesto Slipher in 1912 first used the Doppler shift in astronomy. Then in 1929 Edwin Hubble and
Milton Humanson, after using the same method, they discovered that the Universe expands.

Mental Ray custom shader

We decided that the Mental Ray renderer would be used to implement the shader which simulates
the Doppler shift. Writing shaders for Mental Ray was not as easy as in Renderman, because of the
poor documentation. Mental Ray was chosen, because it is better integrated inside Maya which
means it is easier to use as a shader. A couple of weeks were spent, compiling and linking a basic
shader. Even though most of the information needed can be found in the main Mental Ray help file,
this is scattered in over 400 pages and in illogical order (ref 2). In the end, we decided that a small
tutorial could be written in order to better explain the whole process. This tutorial is now online (ref
3) and it has already been used by other people who wanted to start in implementing shaders.

Doppler shader

From the start the idea was to find a way to make the shader generic and be able to apply it to a
whole scene at once without having to change the shaders of each object. After some reading and
tests, the author $we decided it had to be a volume shader which can be attached to the camera and
alter the look of any given scene without any extra work. This is because, this type of shader is
called after all the other regular shaders which means the frame buffer already has a colour which
Doppler will alter according to the shift.(fig 2)

The next concern was how to get the velocity information inside the algorithm. Luckily this
information is available in MentalRay by default, as it is the way the renderer applies motion blur to
the scene in a post render stage. There are two algorithms for motion blur within MentalRay. The
first one is 'Linear' and can detect translations on a per object basis, when the second one is 'Exact'
which works on sampled point basis and means it can work for deformable objects as well. This
information is a motion vector which shows the direction and the magnitude for each point sampled
relative to the camera. MentalRay also gives information about the coordinates of the point sampled
which can then be converted to either world or camera space.

The relative speed of the point to the camera is calculated by measuring the distance of the point to
the camera, then using the motion vector to calculate the point’s position in the next frame. The
distance to this new position is then measured and the relative speed is the difference between these
two distances. If the difference is zero, the point is static. If it is positive, it means it travels away
from the camera and vice versa. Now this variable is able to drive the shift of the colour.

In the early stages of the shader implementation, red or blue colour was just added to the point
sampled to represent the relative speed from the viewing camera. But after that, a proper algorithm
had to be written which would do the actual colour shift.

In the first place an accurate approach was researched which was ways to convert the RGB values
into a frequency equivalent, do the shift with the real Doppler formula and then convert it back to
RGB. After a lot of experiments, it was realised that this was not that easy but more important not
that accurate. An algorithm which converts light Wavelengths to RGB value was fount, but not the
inverse (ref 4). RGB is a 3d value and has more information than a colour wavelength which is one
dimensional. RGB has a greater range of colours as it includes information like the saturation and
the lightness. Even if the implementation had taken that way, by working out an algorithm which
would convert RGB to Wavelength, the process would be much more complicated and it would
probably have many accuracy errors. A source of this inaccuracy is the fact that RGB cannot
reproduce the whole visible spectrum exactly. There are some RGB values which correspond to a
small range of wavelengths. In this case the algorithm would be:

fig 2

1. Temporary convert the RGB to HSV.
2. Store the saturation and lightness of the current colour.
3. Push the RGB to the maximum saturation of the colour.
4. Convert RGB to light wavelength.
5. Shift the wavelength.
6. Convert the wavelength back to RGB.
7. Restore the saturation and lightness to the final colour.

On the other hand it was noticed that the colour range the Wavelength to RGB conversion algorithm
produces is almost identical with the hue scale (fig 3). The main difference is that the hue scale
starts and finishes with red, whereas in reality the visible spectrum goes from red to violet and then
fades to black as it gets in to the invisible part. This can be expressed as the following algorithm:

1. Convert the RGB to HSV.
2. Apply the shift by changing the Hue
value.
3. Fade the colour to black if it is near
the boundaries of the visible spectrum.
4. Convert the new HSV to RGB.

Even if this approach does not involve the
real Doppler shift formula, it is much more
accurate and faster than the first one as it
involves fewer conversions. It was quite
easy to locate algorithms to convert colour
between those two different models (ref 5),
so two functions were implemented. The
next issue was how much to shift the hue
value for a given relative speed so as to
approximate the Doppler shift. The shift
itself is not only dependant on the relative
speed but also on the speed of light. In
reality the speed of light is constant but in
the case of the shader a much smaller value
must be used for the speed of light, so the
effect can be visible for smaller scales. It
was decided the speed of light should be a
variable, which can be changed by the user
$so to better control the effect.

z = (rs / c) + 1

The shift (z) is equal to the ratio of the relative speed (rs) over the speed of light (c) plus one (ref 6).
Afterwards, it is this (z) factor which multiplies the colour frequency. So if the camera is moving
towards the object with the speed of light, the frequency of the colour doubles. What needed to be
done, was to map the frequencies in to the hue scale. The visible light spectrum starts from a
wavelength of about 400nm and goes up to 700nm. So at 400nm there is violet colour with a hue of
293 and on the other side is orange at 600nm which has hue 37. It is obvious that the relationship is
such that doubling the frequency equates to a shift in hue of approximately 512 units. The final
formula is:

HueShift = (relativeSpeed / lightSpeed) * 512

H += relSpeed / (speedOfLight / frameRate) * 512;

fig 3

Light speed is first divided by the playback frame rate because the relative speed is measured on a
per frame basis.

The next step was to darken the colour as it shifts out of the visible spectrum. It was mentioned
previously that the RGB scale has some colours which do not correspond to the visible light
spectrum. These correspond to the hue values greater than 300. For values larger than 300 the hue is
set to 300 and the intensity drops off linearly over the range 300 to 360.

if(H>300)
{

if(H>360)
H = 360;

V *= 1-((H-300)/60);
H=300;

}

The same is true for the other side of the spectrum: the colour attenuates if the hue drops below 0.

if(H<0)
{

if(H<-60)
H = -60;

V *= (H+60) / 60;
H=0;

}

Disadvantages of the Doppler shader

The main problem with the shader as it works right now in its current state is that even if there is no
shift, the colours with hue greater than 300 are lost, as it is obvious from the above algorithm. The
problem is that these colours are combinations of more than one electromagnetic wavelength so
they must first be broken down, shifted and then recomposed. Unfortunately this was beyond the
scope of this project, so it was not researched.

There is also another drawback of the shader which makes it not work in a realistic way. As was
mentioned in the explanation of the phenomenon, for great shifts invisible radiation like infra-red,
ultraviolet or even microwaves and X-rays can become visible to the human eye. This cannot be
simulated with this shader as there is no information about the invisible radiation in a common 3D
application’s scene so it simply turns the colours to black.

A solution to this problem would involve a whole collection of new shaders and new colour
channels in the frame buffer. Surface shaders which would be able to calculate how the object
diffuses, reflects or refracts the different types of radiation. The surface could also emit its own
radiation, for example if it is hot. Light shaders which would light the scene in the invisible
spectrum. Also different atmospheric shaders since some radiations react differently. For example
infra-red is not blocked by fog, but it has a different refraction index from visible light. The hardest
part, which would involve quite a lot of research, would be the representation of the invisible
radiation. In computer graphics, three colour channels are used, only for the visible light. Since the
visible light is just a small portion of the whole electromagnetic range, many more channels would
be needed to store and manipulate the extra information.

Other applications of the shader

After the shader was finalised, it was tested with a few animation renders which illustrate the
Doppler phenomenon in various situations. In the mean time though, it was noticed that the shader
could produce some interesting results with other more abstract scenes.

In some of the cases though, the fact that the colour was turning black as it was going out of range
was not desirable. A simple solution was to loop the hue and not attenuate the colour. So an extra
boolean attribute was added to the shader node.

if(loopHue)
{

while(H >= 360)
H -= 360;

while(H < 0)
H += 360;

}

This gives interesting results with deformable surfaces. One of the test renders was to convert a
simple plane with a photo to a soft body. Since different areas of the surface deform at different
speeds an interesting effect is produced. It looks like the colour patterns made by oil in to water. On
the other hand looping the hue in an ordinary scene where the camera moves around, does not give
such an appealing result. The repetition and vast array of colour patterns makes the scene look more
like a disco.

Relativistic Rendering

One of the initial ideas behind this project was the research and development of a rendering
technique which treats light as having a finite velocity like in reality. Off course, since light travels
extremely fast and appears instantaneous to us, all known commercial renderers assume that light
has an infinite speed. After some research and lot of thinking it was realised this was extremely
ambitious within the scope of this project. It would involve the implementation of a whole new
renderer which would work in a completely different way to current scan-line or raytraced renderers.
The Doppler shader was part of this idea, but in the end it seemed that it was the only part that could
be implemented. So the rest of the idea was kept at a theoretical level, researching some approaches
and the benefits of it in computer graphics. There are quite a few papers about this type of
rendering, but unfortunately all that it was possible to be locate was their abstracts.

Such a renderer probably would not have any practical application, beyond that of an educative tool
to illustrate some phenomena which take place on much greater scales and cannot be perceived by
us in our natural world. Of course it would be really interesting to see and explore these visual
effects as not many people are familiar with these phenomena. It is also interesting to point out that
even though there are so many theories and much research on how light truly reacts in a relativistic
way, scientists only have a small collection of visual examples on which to base their theories.

The two main simulations that would be able to run with such a renderer would be the bending of
light near strong gravitational fields and the delayed perception of actions which take place far away
from the observer.

Bending of Light

In the past some scientists believed that light was a wave, whilst others argued that light was a type
of particle, but all of them thought that light could only travel in a straight line inside a vacuum if
there was nothing to refract it. Nowadays it is known that light’s behaviour varies depending on the
occasion and may also bend. It was when Albert Einstein published his paper in 1916 on general
relativity that people started to think of light in a different way (ref 7). Later, on 1919, this was
proved when astronomers noticed a slight bend of the light near the Sun where the gravity is quite
strong. The angular positions of known stars were a bit different as the line of sight approached the
Sun. Nowadays scientists have discovered this phenomenon on a greater scale near massive black
holes which have enormous gravity. Those create a gravitational lens effect which means some
objects which appear next to the black whole may have a double image.(fig 4) It is even more
interesting if we imagine how things would look if we were able to stand close to a black hole. As
we approach the event horizon of the black hole, the light bends more and more and falls almost
vertical to the centre of the hole. Because of that we would not be able to see any light coming from
our surroundings but only from a small circular window above us. Within this small window, we
would not only be able to see a view of the entire universe, but also many duplicates of it because
some photons can orbit a few times around the hole before they reach our yes.(fig 5)

The easiest way to understand how black holes can trap light and also bend it is if we first consider
the escape velocity of a celestial body. The escape velocity is the minimum velocity an object must
have in order to escape the gravitational field of a specific planet or star. On Earth, if we throw a
rock vertically, we expect it to fall back down because of gravity. But if we throw it with a speed
greater than 11.1 km/sec, which is Earth’s escape velocity (ignoring air friction), the rock will not
fall back.

v = sqrt(2GM/R)
(v = escape velocity, G = gravitational constant, M = mass of the object, R = radius of the object)

Given the formula which describes the escape velocity we notice that the greater the mass of the
celestial object or the smaller its radius, the greater the escape velocity. So with celestial bodies like
black holes which have a massive mass but also a tiny radius, the escape velocity exceeds the speed
of light within the event horizon. This means, that even if an object reaches the speed of light, it will
not be able to escape the gravitational force of a black hole. Of course, the same happens with the
light itself and this is the reason why anything that falls into a black whole, cannot escape.

fig 4 fig 5

Also, when light is influenced by a big gravitational field, it is also affected by the Doppler effect as
well. For example the light from a star with an escape velocity of half the speed of light, would have
double the wavelength (or half the frequency) of the light emitted. Or if we observe an object falling
into a black hole, we will see its colour changing through the spectrum, before it disappears entirely.

Delay of visual perception

Since light has a specific speed visual information will take some time to reach our eyes. This fact is
not that obvious to us. We can compare this occurrence to sound which also has a finite speed. For
example, we see lightning before we hear the thunder. We see a distant firework before we hear it
explode. In the case of sound the difference is that we have a frame of reference: a visual event that
reaches us at nearly the same moment the event took place. This means that we can easily measure
the delay between the event and the aural evidence of that event. On the other hand, this is not
possible with light because there is no faster way to get the information that an event took place
earlier than to perceive it visually. It is like a blind man who cannot perceive the delay in sound,
because he cannot see when the event happened. So for example if there was a major change on the
surface of the Sun, we would only be able to see it about eight minutes later. Even if we had a
remote camera in orbit close to the Sun, we would not be able to learn about this event earlier,
because radio waves travel at the same speed as light.

The perception we have about the environment is heavily based on our vision. We believe things we
see and we may doubt others that we have not seen with our own eyes. We take it for granted that
everything we see happens at the present time. This is not true. We actually see the light which left
an object a little bit earlier, so the further away we look, the further back in time we see. We look at
the Sun, but we are actually observing how the Sun was 8 minutes before. This is more than
common in astronomy. Because of the vast scale of space, everything we see in the sky, has taken
place ages ago. The closest star to us, Alpha Centauri, is 4.35 light-years away, which means we see
it as it was about four years ago. Going even further, we see the closest galaxy, Andromeda, as it
was 2.9 million years ago when our planet was ruled by dinosaurs. Going to the extreme, the
furthest celestial objects that astronomers can see are Quasars which are more than 10 billion light-
years away. If we think that the age of the universe is estimated to be about 14 billion years, we
understand that Quasars do not exist any more, but they are actually evidences of how the universe
was in its prime stages, in a different era.

There is an interesting artefact of this phenomenon which is not possible to observe, but would be
nice to simulate through the use of computer graphics. If we had a space ship which could travel at
any speed and also a very powerful telescope with which we could observe a specific event on
Earth, we would be able to see the event taking place at any speed, even backwards. Travelling
away from the Earth with half the speed of light and looking backwards, we would see the event
evolving at half of its speed. When we reach the speed of light, the event will freeze as new photons
will not be able to reach our eyes. And while travelling with double the speed of light, we would be
able to see the event evolving in reverse. Of course in reality this is not possible either because
nothing can travel faster than light (as we at least know until now), or because of the huge Doppler
shifts. Also travelling faster than light, would create a shadow behind us, which would not make it
possible to see anything backwards.

Theoretic approach for a Relativistic Renderer

Possibly such a renderer would be able to work with raytracing. Rays are emitted from the camera
for each sample of each pixel and they travel in a straight line until they hit an object and return its

colour. But because we need to make the ray hit an object in a previous time, the renderer must be
able to refer to different ‘frame-scenes’ (renderers are typically not aware of animation, they just
render different static scenes for each frame. Only in the case of motion blur does the renderer need
information about the animation of the objects in the scene). So for every frame duration that the ray
travels without hitting any objects, the renderer should change ‘frame-scene’ whilst keeping the
same attributes for the ray (world space position, direction, velocity and colour).

The drawbacks of this approach would first of all be efficiency. More than one ‘frame-scene’ must
be loaded into memory so the renderer can refer to them. Moreover, going frame by frame
backwards to resolve where the ray is going to hit, would be just an approximation. Normally in
animation we sample each second with 25 static frames, whereas in this case ideally the samples
must be infinite to get the proper output. For example think of a cylinder which extends parallel to
the Z axis of the camera and is moving sideways. With an infinite number of samples, the cylinder
would look sheared. But using previous ‘frame-scene’ would result in a chopped cylinder with
many straight fragments
(fig 6). Also if an object
is moving quite fast, it
will not block the rays
which happened to
travel in between the
object's current and
previous position. A
solution to this problem
may be an algorithm
which takes all the
moving objects of the
scene and makes a
swept collision test
with each ray. So the
point at which the first
collision takes place is
the point the ray should
render. Of course the
renderer should be
aware of all animation
within the scene. Again
something like this
would be quite slow, as
collision test algorithms
are generally quite
expensive in terms of
processing power.

For the case of bending light, the ray must be considered as a particle. While the collision algorithm
runs, it should also evaluate the dynamics for each gravitational field which may alter the ray's
direction. One of the initial ideas behind this project, was the implementation of a refractive shader
which would be able to simulate this bending. After some attempts, the idea was rejected. The first
reason was that the shader should lie on a surface, which in this case would be a sphere that would
define the volume of influence of the black hole. But gravity does not have a fixed boundary, but
attenuates gradually (g = 1/d^2).

In addition the rays cannot be bent but they can only be redirected in each shader call. This leads to
two different approaches: One approach would be a shader which can redirects and repositions the

fig 6

ray, from where it first hit the influence sphere, to where it should come out. The problem with this
is that any object inside the influence sphere would not be visible from outside, and also the shader
would not work properly if the camera is placed inside the sphere.

The other approach would be to use multiple spheres with the shader, where each one gradually
redirects the ray. The overall result might be correct, but it would only be an approximation. The
more spheres to describe the gravitational field of the black hole, the more accurate the result, but
more time consuming in terms of rendering as there would be more function calls. (fig 7)

Conclusion

After this short period of research, it is obvious that all those phenomena can be simulated in one
way or another with the use of computer graphics. Their application, however, would probably only
be useful for educational purposes, to illustrate how light behaves in scales different to those that we
are used to. Even if an effect like this is required for a film or similar, it would probably be better to
approach the task in a more traditional way as the director would have better control over the final
result.

As regards the personal benefits gained from this project, the most prominent is the fact that the
subject matter was of great interest to me. I have tried to verify the information in this report to the
best of my ability. However, much of the information used originates from books studied in the past
(to which I no longer have access). On the other hand, the process of writing this report has lead to
an even greater understanding of the subject matter. This project has also given me the opportunity
to explore shader writing, which I was hoping to do during the period of this degree. Besides the
shader written for this project, I have already implemented a couple more that I am currently using
in my other two projects.

Finally, I would like thank my supervisor Ari Sarafopoulo, for his guidance on this project. My
classmate Sander Van Der Steen for his help with Mental Ray and my flatmate Adam Cubbit for
reading and correcting this report.

fig 7

References

ref.1 J J O'Connor and E F Robertson. 1998 [online] School of Mathematics and Statistics,
University of St. Andrews, Scotland. [Accessed February 2005]
http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Doppler.html

ref 2 Anon. 2004 Mental images Gmbh. Mental Ray user manual.

ref 3 Cherouveim, G. 2005 [online]. Mental Ray tutorial.
http://www.ch3.gr/tutorials/mentalRay/

ref 4 Bruton, D. [no date] [online] Colour Science [Accessed February 2005]
http://www.physics.sfasu.edu/astro/colour/spectra.html

ref 5 Cardani, D. 2001 Adventures in HSV Space [online] [Accessed March 2005]
http://www.buena.com/articles/hsvspace.pdf

ref 6 Edward L. 2002 [online] Doppler Shift explanation [Accessed March 2005]
http://www.astro.ucla.edu/~wright/doppler.htm

ref 7 Nobel Lectures. Physics 1967. Elsevier Publishing Company Amsterdam.
[online] [Accessed March 2005]
http://nobelprize.org/physics/laureates/1921/einstein-bio.html

Books

George B.Field - Eric J.Chaisson 1987. The Invisible Universe
Vintage Books USA

Kip S.Thorne 1994. Black Holes and Time wraps
W.W. Norton & Company Ltd.

Stephen Hawking 2002. The Universe in a Nutshell
Bantam Press

Papers

Wide-band relativistic doppler effect visualization
Hsiung, Ping-Kang (Carnegie Mellon Univ, Pittsburgh, PA, USA); Thibadeau, Robert H.; Cox, Christopher B.; Dunn, Robert H. P.; Wu, Michael;
Olbrich, Paul Andrew Source: Proc First 90 IEEE Conf Visualization Visualization 90, 1990, p 83-92, 465-

Spacetime visualization of relativistic effects
Hsiung, Ping-Kang (Carnegie Mellon Univ); Thibadeau, Robert H. Source: ACM Eighteenth Annual Computer Science Conference (CSC90), 1990,
p 236-243

Real-world relativity: Image-based special relativistic visualization
Weiskopf, D. (Inst. for Astronomy and Astrophysics, Section Theoretical Astrophysics, University of Tu¨bingen); Kobras, D.; Ruder, H.
Source: Proceedings of the IEEE Visualization Conference, 2000, p 303-310+571

Appendices

#include "shader.h"
/************************/
/* RGB to HSV to RGB */
/************************/
float min(float a, float b, float c)
{

if(a<b && a<c)
return a;

else
if(b<c)

return b;
else

return c;
}
float max(float a, float b, float c)
{

if(a>b && a>c)
return a;

else
if(b>c)

return b;
else

return c;
}
// r,g,b values are from 0 to 1
// h = [0,360], s = [0,1], v = [0,1]
// if s == 0, then h = -1 (undefined)
void RGBtoHSV(float r, float g, float b, float *h, float *s, float *v)
{

float mini, maxi, delta;
mini = min(r, g, b);
maxi = max(r, g, b);
*v = maxi; // v
delta = maxi - mini;
if(delta == 0)

delta = 0.001;
if(maxi != 0)

*s = delta / maxi; // s
else {

// r = g = b = 0 // s = 0, v is undefined
*s = 0;
*h = -1;
return;

}
if(r == maxi)

*h = (g - b) / delta; // between yellow & magenta
else if(g == maxi)

*h = 2 + (b - r) / delta; // between cyan & yellow
else

*h = 4 + (r - g) / delta; // between magenta & cyan
*h *= 60; // degrees
if(*h < 0)

*h += 360;
}
void HSVtoRGB(float *r, float *g, float *b, float h, float s, float v)
{

int i;
float f, p, q, t;
if(s == 0) {

// achromatic (grey)
*r = *g = *b = v;
return;

}
h /= 60; // sector 0 to 5
i = floor(h);
f = h - i; // speedOfLightial part of h
p = v * (1 - s);
q = v * (1 - s * f);
t = v * (1 - s * (1 - f));

switch(i) {
case 0:

*r = v;
*g = t;
*b = p;
break;

case 1:
*r = q;
*g = v;
*b = p;
break;

case 2:
*r = p;
*g = v;
*b = t;
break;

case 3:
*r = p;
*g = q;
*b = v;
break;

case 4:
*r = t;
*g = p;
*b = v;
break;

default: // case 5:
*r = v;
*g = p;
*b = q;
break;

}
}
/*********/
struct doppler
{

miInteger frameRate;
miScalar speedOfLight;
miBoolean loopHue;

};

/*********/
/*********/

DLLEXPORT int doppler_version(void) {return 1;}
DLLEXPORT miBoolean doppler(miColour *result, miState *state, struct doppler *param)
{

miInteger frameRate;
// define the frame rate of play back to determine the speed of light on per frame basis

miScalar speedOfLight;
// define the speed of light in units per second

miBoolean loopHue;
// loops the Hue scale, and doesnt attenutate the colour.

miVector pos0;
miVector pos1;
miScalar dist0;
miScalar dist1;
miVector motion;
miScalar relSpeed;
float R, G, B;
float H, S, V;

mi_point_to_camera(state, &pos0, &state->point);
// set position of the current frame

mi_vector_to_camera(state, &motion, &state->motion);
// set motion

mi_vector_mul(&motion, 2.5);
// motion per frame

mi_vector_add(&pos1, &pos0, &motion);
// position of the next frame

dist0 = mi_vector_norm(&pos0);
// distance of the current frame

dist1 = mi_vector_norm(&pos1);
// distance of the next frame

relSpeed = dist0 – dist1;
// relative speed units/frame (positive:blue negative:red)

if (state->type == miRAY_LIGHT)
return(miTRUE);

frameRate = *mi_eval_integer(¶m->frameRate);
// take parameter from node's attribute

speedOfLight = *mi_eval_scalar(¶m->speedOfLight);
// take parameter from node's attribute

loopHue = *mi_eval_boolean(¶m->loopHue);
// take parameter from node's attribute

R = result->r;
G = result->g;
B = result->b;

RGBtoHSV(R, G, B, &H, &S, &V);
// Convert RGB to HSV

H += relSpeed / (speedOfLight / frameRate) * 512;
// Shift Hue

if(loopHue)
// what to do for the values outside the range (0-360)

{
while(H >= 360)

H -= 360;
while(H < 0)

H += 360;
}
else
{

if(H>300)
// if new Hue value is not going to be visible, fix it and just darken it

{
if(H>360)

H = 360;
V *= 1-((H-300)/60);

// How much to be darkened
H=300;

}
if(H<0)

// if new Hue value is not going to be visible, fix it and just darken it
{

if(H<-60)
H = -60;

V *= (H+60) / 60;
// How much to be darkened

H=0;
}

}

HSVtoRGB(&R, &G, &B, H, S, V);
// Convert colour back to RGB

result->r = R;
result->g = G;
result->b = B;
result->a = result->a;

return(miTRUE);
}

