	Paul Lumley
	
	Pinocchio:Suspended Animation

[image: image1.jpg]

PINOCCHIO: SUSPENDED ANIMATION

Joystick Driven Marionette Plug-In for Maya

Paul Lumley

NCCA Bournemouth University

2005

ABSTRACT

Linear keyframed animation can, for many people, be a difficult concept to grasp and a skill not easily acquired. The quality of motion produced by many 3D animation packages on the market today can be of a high quality, akin to that of natural movement, or to the extreme, highly unrealistic. However the skills necessary to produce detailed and accurate movement are built up over years of experience. For this reason the notion of motion capture is becoming a more viable option. This paper aims to detail the implementation of a simple interface that demonstrates the use of an input device as a means of animation.

1. INTRODUCTION

Man’s fascination with the ability to bring life to inanimate objects has fuelled the existence of many disciplines within animation and performing arts. A natural curiosity to replicate human motion artificially has existed as an art form for many centuries. Lately high demand for, and constant turnover of big budget computer generated films, has placed a huge demand on the animator. A job once occupied by traditional 2D artists has been radically altered as the need for 3D increases and, although the traditional hand drawn animator has not completely become extinct the Hollywood emphasis is very much on computer-generated 3D. Nevertheless, as technology develops, even the role of the 3D

computer animator has been questioned, as motion capture becomes a more viable option. In today’s market place the film industry has provision for two types of CG movie; that of the stylised character animation such as Shrek and Finding Nemo, and fantasy films which require an element of realism such as Lord of the Rings. Two very different approaches utilise human animators and motion capture techniques to produce either highly stylised or highly accurate motion.

2. MOTION CAPTURE
Motion Capture or mocap as its commonly known is the process of digitally recording the motions of real things usually humans but now increasingly animals and was originally developed as a tool in the research of biomechanics. One university in the early 1980’s attached potentiometers to subjects to study their movement and make clinical assessments of any abnormalities they may have.
 In actual fact the idea of motion capture has been around for a lot longer. Walt Disney employed a technique of tracing over footage of actors moving as a means to create animation, such techniques known as rotoscoping are believed to be the earliest form of motion capture. However, in today’s industry, motion capture has come along way. Many studios have motion capture suites and the ability to create quick complex animations is available to many animation houses. There are two types of capture system available: optical systems or magnetic systems. Optical systems employ photogrammetry to measure a marker’s location relative to the 2D fields of a camera’s view. The orientation of a marker is then inferred from the inherent position of the other markers. This is the most popular type of system for the entertainment industry as many markers can be traced at one time and to expand the capture area just involves using more cameras. Magnetic systems use sensors and transmitters to pinpoint the exact location and orientation of the markers, and as the sensors have 6 degrees of freedom, accurate results can be obtained with fewer sensors. Nevertheless towards the edges of the capture area the response tends to trail off and the wiring makes extreme poses for the actor near impossible.

Motion capture in this form provides accurate human motion for use in such films where actors cannot be used. In fact motion capture is now being used to capture the motion of animals such as horses, a highly complex creature to animate. Consequently the use of motion capture in this form could be seen to compromise the role of the animator as more animation houses tend to use motion capture for realistic animation. Nevertheless this does not render 3D animators completely redundant, there is still a need for stylistic and non realistic animation., Films such as Toy Story and Finding Nemo could never make use of motion capture to reduce overheads, consequently there is for the foreseeable future, still a place for 3D animators.

Despite this, motion capture in its general sense can be seen as a tool to aid and assist the animator. The development of small-scale systems and tools use input devices such a mice and joysticks to capture movement within 3D animation packages in real-time. Such systems give the animator the ability to capture quick motions and poses in real-time, thus removing the abstract concept of a time line to work with. The ability to work in a time space of either 24 or 25 frames a second, is a skill that doesn’t come easily to many inexperienced animators who constantly have to repeat playback of movements in real-time to assess their accuracy. Therefore to be able to block out key movements in real-time would be of great benefit allowing the animator to add rhythm and pace to their animation with ease, tweaking the final animation at the end.

As technology moves on, more devices are being developed, such as force feedback sculpting tools for modelling and input devices which have many axes of rotation and degrees of freedom to allow animation without the need of a mouse and many key combinations. Nevertheless there are mainstream devices that could be employed to help the animator produce quick and simple movements, modern joysticks for instance have a varied range of buttons and a wide degree of freedom, capable of achieving many movements. Such a device would be akin to that of a marionette control.
3. MOTIONS OF A MARIONETTE
Puppets exist in many shapes or forms, from finger puppets to foam or latex, or puppets of a string nature. Puppet theatre as an art form has existed for hundreds of years from tribal masks with hinged mouthpieces to elaborate modern day animatronics puppets such as are used at Jim Henson’s. Nevertheless one form of puppetry has remained a cultural heritage of many countries for many years; the marionette has been and still is a favourite form of entertainment for children and adults

[image: image2.jpg]
Pinocchio – Walt Disney ©

of all ages. String puppets such as marionettes can be extremely complex structures, or, on the other hand they can be quite simple. The complexity of a marionette is relative to the detail of motion required, the more complex a marionette the more detailed and expressive its movement. Marionettes have a skeletal structure akin to that of humans, usually made of wood. The individual bones are attached to strings; the more strings, the greater the range of movement. Consequently the more strings a marionette has the more complex its controller needs to be. Appendix A shows a marionette’s control for the upper body of quite a complex puppet - the controls of the lower body would be more or less similar. The most complex of puppets have two separate controls that work in conjunction with each other to produce to the combinations of movements to make the puppet walk and move its upper body at the same time. On the other hand, simpler mechanisms have fewer strings but can still produce wide combinations of movements and even with one controller for the upper and lower body, a marionette can still be convincing. The mechanics of a reasonably rigged marionette are quite simple; each bone has a joint that replicates the joints of a human. These joints have a varying degree of movement, some have full rotations and some are constrained. The knee joins for instance have 1DOF (degree of freedom) constrained to that of a human to give a realistic impression, where as the hip joints have 2 DOF allowing the joint to rotate in 2 directions. Consequently a marionette’s control translates its movement to that of the puppet owing to complex system of strings and joints.

Although the most complex of controls can have many degrees of freedom and produce many different movements, the difficulty lies in developing a control that can accomplish the dynamic range of an actual human. Firstly some important decisions need to be made about the ability of the puppet - does it need to fully replicate that of a human or should it simply be a representation?

The principles that apply to the design of a marionette can also be applied to the design of an interface that connects a user input device such as a joystick and a CG character rig. In the case of puppet design the control needs to be as versatile as possible; however a control that drives a computer puppet can take certain liberties. At a design stage I can make certain assumptions about the environment that my puppet exists in and the types of movements he makes. For example as the legs move forward the body will follow. In the case of the puppet the body will not follow if the legs alone are moved, however in cg this can quite easily be employed possibly reducing the need for some controls. Consequently to enable a rig to be controlled by quite a primitive input device, as joysticks are, some extensive rigging needs to be employed to map the movements of the joystick to that of the rig. This process is an integral part of interface design and needs to be considered carefully. The joystick I have used for the purpose of this report is the Microsoft Sidewinder Dual Strike game pad. I have chosen such device as it has quite an unusual design and a great amount of control Appendix B, noticeably it has a rotating arm with two planes of rotation that hopefully would be quite useful in creating animation.

4. CHARACTER RIGGING
CG Character rigging is the process of applying controls, constraints and expressions to a skeleton to aid in animation. A successfully rigged character should enable the animator to utilise the skeleton without any prior knowledge of its set-up. However, character rigging is not an exact science and can be extremely subjective, some animators prefer their characters rigged in a specific way and generally rigging is tailored to the needs of the character.

The process of rigging a character has varying levels of complexity and detail ranging from applying kinematics, to defining selectors and locators, to scripting expressions that specifically define the movement of one object with relation to another. The level of rig depends on the needs of the individual animator and the type of character to animate. Nevertheless every rig nearly always has to have some sort of defined motion, which denotes how joints move relative to each other.

[image: image3.jpg]
Character Rigging – Maya Screen shot

Once a basic skeleton has been devised the character has to be set up to assist the animator create the desired movements while animating. This is a personal process to the animator and much of a character’s set-up depends on the type of character and the movements desired. For instance an animal’s set-up may be different to that of a human.

Simple character rigging mainly implies the application of kinematics to a defined skeleton. A skeleton is made up of bone-like objects hidden beneath the skin of the character that connect with and move in relation to each other. Using a technique known as parenting, a target object (the child) is assigned to another object (the parent), which then passes the transforms it receives down to each child in the skeleton hierarchy. This type of skeleton gives the animator the greatest control over the movement of individual joints, however the process is more tedious as nearly every individual joint will need keyframing at some point. A skeleton set-up of this type of is said to use forward kinematics as the motion of joints moves forward through the skeleton.

A more preferred method of animation uses Inverse Kinematics. Inverse kinematics segments part of the skeleton and unlike forward kinematics the upper joints within that segment move in response to the lower joints. For example IK set-up is usually applied to that of arms and legs where a natural bend is needed at one joint. An IK handle is placed on the ankle joint and the hip joint and thus an IK algorithm will respond as follows: given the end point of a chain of bones i.e. the ankle and foot, what angle does the parent joint i.e. the knee joint, need to be in order to achieve the desired position of the foot. Consequently upper joints outside that of the IK handle are unaffected as FK motion still applies.

A simple character set-up will consist of sections of the skeleton using IK motion and the rest using FK. The animator is then free to add his own controls as he sees fit.

Character set-up and rigging can be an extremely complex task, skeletons by their very nature can be confusing to the animator with many joints not being named correctly and due to the nature of the software, the selection of specific joints can be extremely difficult. Consequently many animators and technical directors see fit to include scripts and controls to make the animation and movement of a foreign skeleton more intuitive. This defines a more advanced character rig, including:

- IK/FK Blending

- support joints

- constraints

- selectors

- advanced scripts, which would specifically define set movements

Although inverse kinematics provides a relatively good animation solution for most characters, some situations require animators to switch between forward and inverse kinematics when keyframing joints for special motions such as an arm swinging or moving. Likewise, IK motion is especially good when we need to fix a character’s arms to an object, therefore advanced character set-up would allow for blending between ik and fk.

In truth the human skeleton is a complex structure with over 200 bones which all contribute to the movement of the human body; subsequently any replication in 3D form would not produce the complex range of movement we ourselves can do. Therefore we need to make assumptions about the character we are animating. If it’s a human then we can guarantee that certain limbs will move in specific ways. We can then set the character using extra joints to gain the wealth of movement that we can achieve. This is especially true for the foot, by adding support joints and ik handles we can control the roll of the foot from heel to toe as the character walks.

Constraints are useful when working with joints that can be directed, such as knees and elbows. As these joints bend with their associated ik handle, they are restricted to the direction of the pole vector attached to the ik, therefore to direct the knee and elbow joints of a character, we constrain the pole vector to point at an object that the animator can use to key the animation.

Selectors allow animators with little or no knowledge of the skeleton structure to select specific joints without having to search through the joint hierarchy thus saving a lot of time, also with complete and complex rigs, the joints of the character can be hidden from the animator.

Advanced scripting is used to glue everything together, to create simple interfaces for animators so that they don’t have to worry about anything technical to do with the rig or skeleton. The interface provides all the functions and movements the animator would need to animate. Consequently the rig needs to be extensive enough to account for every need of the animators, with the ability to strip away the interface and controls to allow manual control.

The rigging of a character is an extremely personal procedure and therefore the needs of the animator or operator need to be put first. Rrigs can be over-complex and too simple, therefore, getting the balance is crucial.

As I have previously stated I intend to rig a character and develop a tool that allows the complete control of the character's movement with a standard gaming joystick. Taking the above information about character rigging into account, I have laid down some initial observations:

- purpose of the tool needs to be clearly defined

- the rig needs to be specialised for use with a joystick

- the tool would need to accommodate different rigs

- the rig and tool need to be tested

At this point let me state my intended market for this tool. I intend to aim the plug-in utility to two types of user, the novice; someone with no animation experience who can produce quick animation with no knowledge of the software, and the experienced user; to enable animators to quickly block out basic movements in real time allowing them to add rhythm and pace to animation at an early stage.

Consequently the rig needs to accommodate both ends of the scale, the experienced, and the novice. However the purpose of the tool for experienced users is to provide quick visualisations of a movement and not feature length productions, therefore the interfacing and rig for the character will be designed in mind of a novice, with simple controls but the ability to get underneath the interface and animate manually.

The controls of a joystick do not relate directly to every movement you would want to accomplish from a character rig, therefore assumptions need to be made and scripts applied to interface the joystick with the rig. I do not want the joystick to simply direct the character using different pre-animated cycles. Admittedly, some pre-set movements may need to be employed however the use of the joystick to tweak these movements is essential, the interface will also allow the connection of any input skeleton.

Ultimately the tool would be versatile enough to accommodate for different rigs and types of character. To achieve this some scripting would need to be done to standardise the input skeleton, apply a rig and interface it with the plug-in.

Finally a road test would need to be completed on the tool, tests carried out by both types of users would ensure that all objectives have been achieved.
5. INTERFACING
Rigging and interfacing can be closely related, rigging a character interfaces the skeleton for use by the animator. The correlation of the plug-in interface and the character rig are integral in producing a tightly designed tool of this nature. Early in the design stage I have decided that the character should resemble that of a string puppet consequently I am not looking to achieve realistic human motion as the joystick I am using is far too primitive. My sole aim is to develop some simple movements to demonstrate that this type of user interaction is a viable option for animation.

[image: image4.jpg]
Sidewinder Controls- Microsoft ©

The chosen joystick has a multitude of buttons and an arm with 2 degrees of rotation and although this may not be the best solution the joystick does offer a good amount of information to work with. There are many considerations with interface design such as ergonomics and feasibility and to produce a tool which is intuitive and natural to use yet comprehensive enough to satisfy the experienced animator, takes time and testing. Therefore my main concerns lie with relating the controls of the joystick to the translation and rotations of the puppet in order to achieve a working demonstration. I can however maximise the amount of movement I can achieve with the joystick by creating a secondary interface that lays on top of the character rig. My initial thoughts would be to directly relate the channels of the joystick to that of the character rig, this would give me a great amount of control over the rig but would make the tool extremely non-versatile. Also the joystick I am using is limited to less than 10 different controls, which would need to be mapped to a rig capable of much more. Consequently the rig needs to be adapted so that it can be controlled with much less information. To solve this I have developed an intermediate rig which controls the character in the same way as a string puppet, this limits the input that can be fed to the rig and makes it much more viable to feed in the channels of the joystick. Such secondary interface allows for a more flexible tool as essentially any rig could then be attached to the joystick without the having to redevelop the plug-in, the joystick then controls the secondary rig and not the character directly.

[image: image5.png]
Secondary Rigging – Maya Screen shot

Also the use of an initial character rig that would be used by an animator, gives the puppet greater diversity allowing any skeleton to be attached to the intermediate rig. Interfacing in this way allows for maximum versatility as the input device is not entirely dependent on the type of skeleton it uses, and the skeleton is not entirely dependent on the intermediate rigging. Consequently the plug-in can accommodate for any type of character input.

I have closely considered and nearly replicated the controls of a marionette in the design of the secondary rigging. I have split the motions of the puppet into 3 sections; transformations of the entire puppet, the legs and the arms. Each of these transformations requires translation and rotation operations. The joystick I am using utilises two rotation axes; X and Y and has two translation options; the movement pad and the four directional buttons. The other buttons on the joystick will allow for different operations such as selection and miscellaneous functions. Limitations of the joystick do mean that there is no z rotation plane, however this can hopefully be worked around with the rigging.

The principle of the secondary rigging relies on the combination of the three controls to relay convincing movement of the puppet, therefore the ability to operate each individual control simultaneously is paramount to the puppets believability. However I do believe it’s not possible to fully implement this with the joystick I am using, which would limit the quality of movement obtained.

The secondary rigging has been designed so that it replicates a marionette’s controls, consequently a rotation of the leg controls would raise and lower the legs as if they were attached to strings, likewise with the arms. There is a problem however, in that the joystick only offers two degrees of translation on the X and Z plane, consequently I would have to employ a shift button to allow a translation in the Y plane using buttons already attached to translations. Nevertheless my main concern is to apply the basic transformations to the leg arm and puppet controls and not to concern myself too much with the ability to operate them simultaneously. So far I can map X, Y and Z translation and X, Y rotation to any of the controls of the secondary rig, giving already a vast combination of movements.

6. PINOCCHIO V1.1
Pinocchio V1.1 is a Maya plug-in that feeds the channels of a standard gaming joystick into the transformations of a string puppet rig. The ultimate aspirations of this tool would be to capture the movement in real-time and bake this movement to keyframes.

There currently is not a lot of research on motion capture using a joystick within the Maya community. Some users have developed tools that capture the motions of a mouse and record the transformations of the object being affected; however this has not been done with a joystick. There is however the means to connect a joystick directly to Maya through the device editor, as long as you provide a joystick server. The joystick server would poll the channels of the device and relay that information to Maya. The device editor then allows you map these channels to attributes of objects. Nevertheless this method is not very expandable as the device editor is quite limited and it relies on a reasonably good joystick server. I decided against the use of the device editor as a viable option as it would not let me access all the channels of my chosen joystick.

Pinocchio V1.1 therefore makes use of the Maya API and a cross platform joystick library that accesses the channels of any attached device. I make use of the Maya idle callback function to repeatedly pass the information from the joystick to Maya. There are two main types of function within the plug-in; C++ functions which query and update the joystick input and Maya API functions which relay information about the joystick and perform transformations within Maya itself. The program replicates the secondary rigging controls of the puppet in code. Each control has variables akin to the translation and rotation attributes of Maya objects. As the joystick is queried the plug-in alters the values of the coded controls and passes these values to the relevant rigging controls in Maya. This transfer of data is possible by creating a selection list containing the leg, arm and main puppet controls, the correct control is then referenced through the selection list and the values passed.

A simple yet effective method will actually allow any selected object in Maya to be controlled by the attached joystick. Nevertheless this type of access within the API is not very expandable and would not allow for alterations of the rig or character. Consequently further development would allow for a representation of the joystick controls to be created using custom nodes within Maya. These nodes would relate directly to the joystick, allowing the end user to connect the joystick to any rigging at a software level without the need for code. Unfortunately there are limitations with the plug-in. The limitations of the joystick are apparent; the motion created is very linear and robotic and there is no real-time keyframing ability at the moment - hopefully these limitations would be addressed with time.

7. CONCLUSION
In conclusion Pinocchio V1.1 goes some way to demonstrate that animation controlled via an alternative human interaction device is possible, albeit somewhat primitive. A simple tool that has the ability to allow any character to be controlled by virtually any input device and not just one at that, if two joysticks could be attached then this would double the possibilities of fluid and natural motion. I have chosen to replicate the motions of a string puppet to limit my goals owing to time, but what’s to say that with the right combinations of input device, human movement could not be achieved in the future.

For the industry itself this type of tool could be employed to aid animators in their work. Some animators have difficulty visualising a particular movement in real-time. With an advanced version of Pinocchio animators would be able to quickly identify key movements. On a client basis animation companies would be able to produce accurate block tests quickly and efficiently for client approval early in a production pipeline. Also in gaming, Pinocchio could be used to test animation cycles or even to produce scripted games within Maya itself.

Alternatively this type of tool could be used to allow people with no previous animation experience to quickly get to grips with creating animation without the knowledge of complicated software solutions such as Maya, XSI and Studio Max. For example a stripped down version of the aforementioned packages would allow children to animate a fully textured and lit character in real-time and render it. Thus a simple way of conveying movement would allow animation to be employed by users with no software knowledge as teaching aids.

Nevertheless would such a tool pose the same problems as motion capture? Would this type of plug-in remove the skill required to produce intricate animation? Would animators become redundant?

As it stands such a tool is nowhere near as accurate as keyframed animation. There are possibilities but I anticipate these would take a great deal of research and development. Like marionette theatre, the outcome of the performance relies on the complexity of the puppet creating a highly stylised display. Consequently Pinocchio can be seen as a development in human computer interaction within the animation field or a means to producing a different type of animation with the possibility of providing an aid to experienced animators.

8. FURTHER WORK
I have presented a new approach to character animation. At present Pinocchio V1.1 does have the following limitations:

· There is no support for user supplied character rigs.

· There is no support for other or multiple input devices.

· The quality of motion is extremely robotic.

· There is no ability to keyframe in real-time.

Such limitations reflect in the quality of the motion created by the plug-in.

Future developments would set about solving the limitations identified. The use of custom API locators would allow the joystick controls to be directly referenced from within Maya allowing the user to attach any rig to the joystick. Support for multiple input devices is present within the joystick library and needs to be implemented within the plug-in.

Consequently with these slight modifications two joysticks could quite easily allow for combinations of movements that can be applied to character, thus solving some of the robotic motion.

Finally one of the major limitations is that the joystick input in the Maya API locks off any other input for that object within Maya. Consequently I cannot make use of Maya’s ‘Play –record’ facility to bake the movement of the joystick to keyframes, and would have to implement my own keyframing buffer as the timeline plays.

Developments of this nature would make the use of a tool like Pinocchio a much more viable option in the animation industry.

9. ACKNOWLEDGEMENTS

The author would like to thank Rob Bateman, Lecturer at the National Centre for Computer Animation Bournemouth for his help and permission to use his C++ joystick library.

The author would like to acknowledge the fact that extensive use was made of tutorials from Maya Character Animation Second Edition: Choi – Sybex 2004 to aid the development of the Pinocchio character rig.

10. REFERENCES

Papers:
DAVID J STURMAN, MEDIA LAB. A brief History of Motion Capture for Character Animation – A paper referenced from “Character Motion Systems”, Sigraph 94: Course 9
SHIN, LEE, GLEICHER, AND SHIN, Computer Puppetry, and Importance-Based Approach.. ACM TOG, April 2002.

STEVE ROSENBLUTH, MICHAEL BABCOCK, DAVID BARRINGTON HOLT Controlling Creatures with Linux (Nov. 1, 2002)
MICHAEL EISENBERG, Tangible ideas for children: materials sciences as the future of educational technology - Proceeding of the 2004 conference on Interaction design and children: building a community
Texts:

Maya Character Animation Second Edition: Choi – Sybex 2004
Web Sites:

http://maya.robthebloke.org/ - Maya API sample code and reference

http://www.jimgamble.com/ - pupperty website

Other References:

Alias Wavefront Maya 6 Reference Manual
APPENDIX A

Design from Jim Gamble Puppet Production

http://www.jimgamble.com/how/control/control.html

[image: image6.png]
APPENDIX B

Microsoft Sidewinder Dual Strike Joystick

[image: image7.png]
image courtesy of Microsoft ©

[image: image8.jpg]
image courtesy of Microsoft ©

APPENDIX C

C++ Template Code courtesy of Rob Bateman built upon by Paul Lumley

// required to link the libraries

#ifdef WIN32

#define NT_PLUGIN

#pragma comment(lib,"Foundation.lib")

#pragma comment(lib,"OpenMaya.lib")

#pragma comment(lib,"OpenMayaFx.lib")

#pragma comment(lib,"OpenMayaUi.lib")

#pragma comment(lib,"Image.lib")

#pragma comment(lib,"OpenMayaAnim.lib")

#endif

// under WIN32 we have to 'export' these functions so that they are visible

// inside the dll. If Maya can't see the functions, it can't load the plug-in!

#ifdef WIN32

#define EXPORT __declspec(dllexport)

#else

#define EXPORT

#endif

#include <maya/MFnPlugin.h>

#include <maya/MEventMessage.h>

#include <maya/MGlobal.h>

#include <maya/MString.h>

#include <maya/MPoint.h>

#include <maya/M3dView.h>

#include <time.h>

#include <stdio.h>

#include <fstream>

#include <string>

#include "Joypad.h"

#include "FrameTimer.h"

// Having created a callback function within Maya, we need to store the generated

// MCallbackId so that we can delete the callback.

MCallbackId g_Callback;

// This function is called once when our plug-in is loaded. We can use

// it to register any custom nodes, mel functions etc.

EXPORT MStatus initializePlugin(MObject obj)

{

// we need to use the plug-in function set to register a new mel command with Maya.

// we can provide some info about the author of the plug-in, the version number, and we

// can also specify a required version of Maya, though usually "Any" will do...

MFnPlugin fnPlugin(obj, "Paul Lumley", "1.0", "Any");

// to keep our game at a steady speed ;)

InitFrameTimer();

// only create callback if input updated OK

if(InitInput() && NumJoypads())

{

// get a pointer to the joypad

g_pJoypad = GetJoypad(0);

/// When creating the callback for the idle function, we need to specify a callback

/// type. In this case we are using "idle", however it can be anyone of the strings

/// that `scriptJob -listEvents` returns;

/// The second parameter is a pointer to the callback function. The third is a user

/// data parameter (which is explained in MEventMessage2 example). In this case

/// we can use NULL since we don’t want any user data

///

g_Callback = MEventMessage::addEventCallback("idle", IdleFunc, NULL);

}

else {

std::cerr << "Could not initialise joypads\n";

return MS::kFailure;

}

return MS::kSuccess;

}

// This function is called once when our plug-in is unloaded. We need

// to tell Maya which mel funcs, nodes etc we are removing.

EXPORT MStatus uninitializePlugin(MObject obj)

{

// use the plug-in function set to unload the plug-in

MFnPlugin fnPlugin(obj);

if(g_pJoypad) {

/// make sure we delete the callback before the plugin quits !!!

/// Maya is likely to crash otherwise!

MEventMessage::removeCallback(g_Callback);

}

/// release DX8 or joystick handles for linux

FreeInput();

return MS::kSuccess;

}
APPENDIX D

Pinocchio.cpp Source Code

//---

// pinocchio.cpp written and implimented by Paul Lumley 17/02/05

// this is the main source file for the implimentation of PINOCCHIO V1.1

//

// PINOCCHIO is a mayaAPI plugin which controls specifically rigged characters

// via the use of a standard joypad, the plugin has been implimented for the Microsoft

// Sidewinder Dual Strike gamepad under the Windows Operating System

//

// PINOCCHIO is complient with the LINUX operating system

//

// PINOCCHIO uses a joypad library 'Joypad.ccp' and 'Joypad.h' implimented by Rob Bateman

// of the National Centre for Computer Craphics Bournemouth and i the programmer hereby

// acknowledge all credit within this plugin code

//

//---

// PINOCCHIO version 1.1 Paul Lumley February 2005

//--

//INCLUDE FILES AND LIBRARIES

// required to link the libraries

#ifdef WIN32

#pragma comment(lib,"Foundation.lib")

#pragma comment(lib,"OpenMaya.lib")

#pragma comment(lib,"OpenMayaFx.lib")

#pragma comment(lib,"OpenMayaUi.lib")

#pragma comment(lib,"Image.lib")

#pragma comment(lib,"OpenMayaAnim.lib")

#endif

// under WIN32 we have to 'export' these functions so that they are visible

// inside the dll. If maya can't see the functions, it can't load the plugin!

#ifdef WIN32

#define EXPORT __declspec(dllexport)

#else

#define EXPORT

#endif

//--------------------------------------

#include <maya/MSimple.h>

#include <maya/MTime.h>

#include <maya/MGlobal.h>

#include <maya/MString.h>

#include <maya/MDagPath.h>

#include <maya/MFnDagNode.h>

#include <maya/MSelectionList.h>

//--------------------------------------

#include <maya/MFnPlugin.h>

#include <maya/MEventMessage.h>

#include <maya/MGlobal.h>

#include <maya/MString.h>

#include <maya/MPoint.h>

#include <maya/M3dView.h>

#include <time.h>

#include <stdio.h>

#include <fstream>

#include <string>

#include "Joypad.h"

//#include "FrameTimer.h"

//#include "pinocchio.h"

//--

//DEFINITIONS

//

// used to limit the axis coordinates between 1 and -1

#define JP_MAX_EXTENT 32766.0f

// dampening values

#define Y_LIMITER (g_pJoypad->Yaxis()/JP_MAX_EXTENT)

#define X_LIMITER (g_pJoypad->Xaxis()/JP_MAX_EXTENT)

// defines the joypad deadzone

#define DEAD 0.2

//--

//DECLARATIONS

using namespace std;

// pointer to the joypad

XInputJoypad* g_pJoypad = 0;

// axis struct has menbers: current and previous to hold information

// about the joypads axis coordinates for state functions

struct axis{

float current;

float previous;

};

// button struct has members: state, change, current and previous to

// hold information about buttons for state functions

struct button{

int state;

int change;

int current;

int previous;

};

// the joypad struct has members: axis and buttons and represents

// the phyisical device, also initialises some of its members

struct deviceJoypad{

axis x, y;

button A, B, C, D, X, Y, UP, L_TRIG, R_TRIG;

deviceJoypad()

{

x.current=0.0;

x.previous=0.0;

y.current=0.0;

y.previous=0.0;

A.state=0;

A.previous=0;

B.state=0;

B.previous=0;

C.state=0;

C.previous=0;

D.state=0;

D.previous=0;

UP.state=0;

UP.previous=0;

X.state=0;

X.previous=0;

Y.state=0;

Y.previous=0;

L_TRIG.state=0;

L_TRIG.previous=0;

R_TRIG.state=0;

R_TRIG.previous=0;

}

};

// the mayaObject struct has members: translate, rotate and misc and represents

// the actual objects within maya

struct mayaObject{

float translateX, translateY, translateZ;

float rotateX, rotateY, rotateZ;

int misc;

mayaObject()

{

translateX=0.0;

translateY=0.0;

translateZ=0.0;

rotateX=0.0;

rotateY=0.0;

rotateZ=0.0;

misc=0;

}

};

deviceJoypad joyPad;

mayaObject rigCtrl, armCtrl, legCtrl;

//--

//MAYA CALLBACKS

// Having created a callback function within maya, we need to store the

// generated MCallbackId so that we can delete the callback.

MCallbackId g_Callback;

//--

//JOYPAD FUNCTIONS

// button is() functions return true is a particular button is

// being pressed these functions store the state information

// about the button

bool isA(){

joyPad.A.state= g_pJoypad->Button(0);

if(joyPad.A.state==1){

joyPad.A.state=1;

return TRUE;

}

else{

joyPad.A.state=0;

return FALSE;

}

}

bool isB(){

joyPad.B.state = g_pJoypad->Button(1);

if(joyPad.B.state==1){

joyPad.B.state=1;

return TRUE;

}

else{

joyPad.B.state=0;

return FALSE;

}

}

bool isC(){

joyPad.C.state = g_pJoypad->Button(2);

if(joyPad.C.state==1){

joyPad.C.state=1;

return TRUE;

}

else{

joyPad.C.state=0;

return FALSE;

}

}

bool isD(){

joyPad.D.state = g_pJoypad->Button(3);

if(joyPad.D.state==1){

joyPad.D.state=1;

return TRUE;

}

else{

joyPad.D.state=0;

return FALSE;

}

}

bool isUP(){

joyPad.UP.state = g_pJoypad->Button(8);

if(joyPad.UP.state==1){

joyPad.UP.state=1;

return TRUE;

}

else{

joyPad.UP.state=0;

return FALSE;

}

}

bool isX(){

joyPad.X.state = g_pJoypad->Button(4);

if(joyPad.X.state==1){

joyPad.X.state=1;

return TRUE;

}

else{

joyPad.X.state=0;

return FALSE;

}

}

bool isY(){

joyPad.Y.state = g_pJoypad->Button(5);

if(joyPad.Y.state==1){

joyPad.Y.state=1;

return TRUE;

}

else{

joyPad.Y.state=0;

return FALSE;

}

}

bool isL_TRIG(){

joyPad.L_TRIG.state = g_pJoypad->Button(6);

if(joyPad.L_TRIG.state==1){

joyPad.L_TRIG.state=1;

return TRUE;

}

else{

joyPad.L_TRIG.state=0;

return FALSE;

}

}

bool isR_TRIG(){

joyPad.R_TRIG.state = g_pJoypad->Button(7);

if(joyPad.R_TRIG.state==1){

joyPad.R_TRIG.state=1;

return TRUE;

}

else{

joyPad.R_TRIG.state=0;

return FALSE;

}

}

//--

// isbutton() function returns true if any one of the joypads

// buttons is being pressed

int isButton(void){

if(isA()||isB()||isC()||isD()||isX()||isY()||isUP()||isL_TRIG()||isR_TRIG())

return 1;

else

return 0;

}

//--

// hasChanged() functions return true if the state of the

// button has changed used to attach functions to a button press

int hasChanged_A(){

int retVal;

joyPad.A.current=g_pJoypad->Button(0);

if(joyPad.A.previous-joyPad.A.current==1)

retVal = 1;

else

retVal = 0;

joyPad.A.previous = joyPad.A.current;

UpdateInputState();

return retVal;

}

int hasChanged_B(){

int retVal;

joyPad.B.current=g_pJoypad->Button(1);

if(joyPad.B.previous-joyPad.B.current==1)

retVal = 1;

else

retVal = 0;

joyPad.B.previous = joyPad.B.current;

UpdateInputState();

return retVal;

}

int hasChanged_C(){

int retVal;

joyPad.C.current=g_pJoypad->Button(2);

if(joyPad.C.previous-joyPad.C.current==1)

retVal = 1;

else

retVal = 0;

joyPad.C.previous = joyPad.C.current;

UpdateInputState();

return retVal;

}

int hasChanged_D(){

int retVal;

joyPad.D.current=g_pJoypad->Button(3);

if(joyPad.D.previous-joyPad.D.current==1)

retVal = 1;

else

retVal = 0;

joyPad.D.previous = joyPad.D.current;

UpdateInputState();

return retVal;

}

int hasChanged_UP(){

int retVal;

joyPad.UP.current=g_pJoypad->Button(8);

if(joyPad.UP.previous-joyPad.UP.current==1)

retVal = 1;

else

retVal = 0;

joyPad.UP.previous = joyPad.UP.current;

UpdateInputState();

return retVal;

}

int hasChanged_X(){

int retVal;

joyPad.X.current=g_pJoypad->Button(4);

if(joyPad.X.previous-joyPad.X.current==1)

retVal = 1;

else

retVal = 0;

joyPad.X.previous = joyPad.X.current;

UpdateInputState();

return retVal;

}

int hasChanged_Y(){

int retVal;

joyPad.Y.current=g_pJoypad->Button(5);

if(joyPad.Y.previous-joyPad.Y.current==1)

retVal = 1;

else

retVal = 0;

joyPad.Y.previous = joyPad.Y.current;

UpdateInputState();

return retVal;

}

int hasChanged_L_TRIG(){

int retVal;

joyPad.L_TRIG.current=g_pJoypad->Button(6);

if(joyPad.L_TRIG.previous-joyPad.L_TRIG.current==1)

retVal = 1;

else

retVal = 0;

joyPad.L_TRIG.previous = joyPad.L_TRIG.current;

UpdateInputState();

return retVal;

}

int hasChanged_R_TRIG(){

int retVal;

joyPad.R_TRIG.current=g_pJoypad->Button(7);

if(joyPad.R_TRIG.previous-joyPad.R_TRIG.current==1)

retVal = 1;

else

retVal = 0;

joyPad.R_TRIG.previous = joyPad.R_TRIG.current;

UpdateInputState();

return retVal;

}

//--

// axisStateChange() functions return true or false if the axis

// is being moved

int xAxisStateChange(){

int retVal;

joyPad.x.current=g_pJoypad->Xaxis()/JP_MAX_EXTENT;

if(joyPad.x.previous-joyPad.x.current!=0){

retVal = 1;

}

else{

retVal = 0;

}

joyPad.x.previous = joyPad.x.current;

UpdateInputState();

return retVal;

}

int yAxisStateChange(){

int retVal;

joyPad.y.current = g_pJoypad->Yaxis()/JP_MAX_EXTENT;

if(joyPad.y.previous-joyPad.y.current!=0){

retVal = 1;

}

else{

retVal = 0;

}

joyPad.y.previous = joyPad.y.current;

UpdateInputState();

return retVal;

}

// axisState() functions return the curent position of the axis-

// up, down, left, right or centre

int xAxisState(){

int retVal; float tempVal;

tempVal = g_pJoypad->Xaxis()/JP_MAX_EXTENT;

if(tempVal>-DEAD&&tempVal<DEAD)

retVal=2;//centre

else if(tempVal>0.2)

retVal=0;//right

else

retVal=1;//left

UpdateInputState();

return retVal;

}

int yAxisState(){

int retVal; float tempVal;

tempVal = g_pJoypad->Yaxis()/JP_MAX_EXTENT;

if(tempVal>-DEAD&&tempVal<DEAD)

retVal=2;//centre

else if(tempVal>0.2)

retVal=1;//up

else

retVal=0;//down

UpdateInputState();

return retVal;

}

//--

//API FUNCTIONS()

//

void setTranslationSelection(float _tx, float _ty, float _tz, int selection){

 MDagPath node;

 MObject component;

 MSelectionList list;

 MFnDagNode nodeFn;

MPlug

plug;

 MGlobal::getActiveSelectionList(list);

 list.getDagPath(selection, node, component);

 nodeFn.setObject(node);

plug = nodeFn.findPlug("translate");

if(plug.isCompound()) {

// get the plugs to the child attributes

MPlug plug_x = plug.child(0);

MPlug plug_y = plug.child(1);

MPlug plug_z = plug.child(2);

// get the values from the child plugs

plug_x.setValue(_tx);

plug_y.setValue(_ty);

plug_z.setValue(_tz);

}

}

void setRotationSelection(float _rx, float _ry, float _rz, int selection){

 MDagPath node;

 MObject component;

 MSelectionList list;

 MFnDagNode nodeFn;

MPlug

plug;

 MGlobal::getActiveSelectionList(list);

 list.getDagPath(selection, node, component);

 nodeFn.setObject(node);

plug = nodeFn.findPlug("rotate");

if(plug.isCompound()) {

// get the plugs to the child attributes

MPlug plug_x = plug.child(0);

MPlug plug_y = plug.child(1);

MPlug plug_z = plug.child(2);

// get the values from the child plugs

plug_x.setValue(_rx);

plug_y.setValue(_ry);

plug_z.setValue(_rz);

}

}

void setArmIKinematicsSelection(int setIK, int selection){

 MDagPath node;

 MObject component;

 MSelectionList list;

 MFnDagNode nodeFn;

MPlug

plug;

 MGlobal::getActiveSelectionList(list);

 list.getDagPath(selection, node, component);

 nodeFn.setObject(node);

plug = nodeFn.findPlug("armIK");

// get the values from the plugs

plug.setValue(setIK);

}

//--

//IDLE FUNCTION()

//

void IdleFunc(void*){

MTime time;

MGlobal::selectByName("marionetteCtrl", MGlobal::kAddToList);

MGlobal::selectByName("control_arms", MGlobal::kAddToList);

MGlobal::selectByName("control_legs", MGlobal::kAddToList);

if(hasChanged_L_TRIG()){//reset puppet

rigCtrl.rotateX=0;

rigCtrl.rotateY=0;

rigCtrl.rotateZ=0;

rigCtrl.translateX=0;

rigCtrl.translateY=0;

rigCtrl.translateZ=0;

armCtrl.translateX=0;

armCtrl.translateY=0;

armCtrl.translateZ=0;

armCtrl.rotateX=0;

armCtrl.rotateY=0;

armCtrl.rotateZ=0;

armCtrl.misc=1;

legCtrl.translateX=0;

legCtrl.translateY=0;

legCtrl.translateZ=0;

legCtrl.rotateX=0;

legCtrl.rotateY=0;

legCtrl.rotateZ=0;

}

//--

//RIG MOVEMENT(selection index 0)

if(!isX()&&!isY()){// X and Y are not being pressed

//if X axis then bend LEFT RIGHT

if(xAxisState()==2)//centre

rigCtrl.rotateZ += 0.0;

if(xAxisState()==1)//left

rigCtrl.rotateZ += 0.05f*X_LIMITER;

if(xAxisState()==0)//right

rigCtrl.rotateZ += 0.05f*X_LIMITER;

//if Y axis then bend FORWARD BACK

if(yAxisState()==2)//centre

rigCtrl.rotateX += 0.0;

if(yAxisState()==1)//up

rigCtrl.rotateX -= 0.05f*Y_LIMITER;

if(yAxisState()==0)//down

rigCtrl.rotateX -= 0.05f*Y_LIMITER;

//if button A then move rig FORWARD

if(isA()&&!isUP())

rigCtrl.translateZ += 1;

//if button D then move rig BACKWARD

if(isD()&&!isUP())

rigCtrl.translateZ -= 1;

//if button B then move rig LEFT

if(isB())

rigCtrl.translateX += 1;

//if button C then move rig RIGHT

if(isC())

rigCtrl.translateX -= 1;

//if button UP && A then move rig UP

if(isUP()&&isA())

rigCtrl.translateY += 1;

//if button UP && D then move rig DOWN

if(isUP()&&isD())

rigCtrl.translateY -= 1;

}

//--

//--

//ARM MOVEMENT(selection index 1)

//if button X && X axis then SWING arms

if(isX()&&xAxisState()==2)//centre

armCtrl.rotateZ += 0.0;

if(isX()&&xAxisState()==1)//left

armCtrl.rotateZ -= 0.5f*X_LIMITER;

if(isX()&&xAxisState()==0)//right

armCtrl.rotateZ -= 0.5f*X_LIMITER;

//if button X && Y axis then move arms UP/DOWN

if(isX()&&yAxisState()==2)//centre

armCtrl.translateY += 0.0;

if(isX()&&yAxisState()==1)//up

armCtrl.translateY -= 10*Y_LIMITER;

if(isX()&&yAxisState()==0)//down

armCtrl.translateY -= 10*Y_LIMITER;

//if button X && button A then move arms FORWARD

if(isX()&&isA())

armCtrl.translateZ += 1;

//if button X && button D then move arms BACKWARD

if(isX()&&isD())

armCtrl.translateZ -= 1;

//if button X && button B then move arms LEFT

if(isX()&&isB())

armCtrl.translateX += 1;

//if button X && button C then move arms RIGHT

if(isX()&&isC())

armCtrl.translateX -= 1;

//if button X && button UP(change) then SWITCH KINEMATICS

if(isX()&&hasChanged_UP()){

if(armCtrl.misc==1)

armCtrl.misc=0;

else

armCtrl.misc=1;

}

//if button X && button R_TRIG then perform marionette translation controls

//if button A then move rig FORWARD

if(isA()&&isX()&&isR_TRIG())

rigCtrl.translateZ += 2;

//if button D then move rig BACKWARD

if(isD()&&isX()&&isR_TRIG())

rigCtrl.translateZ -= 1;

//if button B then move rig LEFT

if(isB()&&isX()&&isR_TRIG())

rigCtrl.translateX += 1;

//if button C then move rig RIGHT

if(isC()&&isX()&&isR_TRIG())

rigCtrl.translateX -= 1;

//--

//--

//LEG MOVEMENT(selection index 2)

//if button Y && X axis then SWING legs

if(isY()&&xAxisState()==2)//centre

legCtrl.rotateY += 0.0;

if(isY()&&xAxisState()==1)//left

legCtrl.rotateY -= 0.05f*X_LIMITER;

if(isY()&&xAxisState()==0)//right

legCtrl.rotateY -= 0.05f*X_LIMITER;

//if button Y && Y axis then RAISE/LOWER legs

if(isY()&&yAxisState()==2)//centre

legCtrl.rotateZ += 0.0;

if(isY()&&yAxisState()==1)//up

legCtrl.rotateZ -= 0.5f*Y_LIMITER;

if(isY()&&yAxisState()==0)//down

legCtrl.rotateZ -= 0.5f*Y_LIMITER;

//if button Y && button A then move legs FORWARD

if(isY()&&isA()&&!isUP())

legCtrl.translateZ += 1;

//if button Y && button D then move legs BACKWARD

if(isY()&&isD()&&!isUP())

legCtrl.translateZ -= 1;

//if button Y && button B then move legs LEFT

if(isY()&&isB())

legCtrl.translateX += 1;

//if button Y && button C then move legs RIGHT

if(isY()&&isC())

legCtrl.translateX -= 1;

//if button Y && button UP && A then move legs UP

if(isUP()&&isY()&&isA())

legCtrl.translateY += 1;

//if button Y && button UP && D then move legs DOWN

if(isUP()&&isY()&&isD())

legCtrl.translateY -= 1;

//if button Y && button R_TRIG then perform marionette translation controls

//if button A then move rig FORWARD

if(isA()&&isY()&&isR_TRIG())

rigCtrl.translateZ += 1;

//if button D then move rig BACKWARD

if(isD()&&isY()&&isR_TRIG())

rigCtrl.translateZ -= 1;

//if button B then move rig LEFT

if(isB()&&isY()&&isR_TRIG())

rigCtrl.translateX += 1;

//if button C then move rig RIGHT

if(isC()&&isY()&&isR_TRIG())

rigCtrl.translateX -= 1;

//--

setTranslationSelection(rigCtrl.translateX, rigCtrl.translateY, rigCtrl.translateZ, 0);

setRotationSelection(rigCtrl.rotateX, rigCtrl.rotateY, rigCtrl.rotateZ, 0);

setTranslationSelection(armCtrl.translateX, armCtrl.translateY, armCtrl.translateZ, 1);

setRotationSelection(armCtrl.rotateX, armCtrl.rotateY, armCtrl.rotateZ, 1);

setArmIKinematicsSelection(armCtrl.misc, 1);

setTranslationSelection(legCtrl.translateX, legCtrl.translateY, legCtrl.translateZ, 2);

setRotationSelection(legCtrl.rotateX, legCtrl.rotateY, legCtrl.rotateZ, 2);

}

//--

//API PLUGIN FUNCTIONS

// INITIALIZEPLUGIN()

// This function is called once when our plugin is loaded. We can use

// it to register any custom nodes, mel functions etc.

EXPORT MStatus initializePlugin(MObject obj)

{

// we need to use the plugin function set to register a new mel command with maya.

// we can provide some info about the author of the plugin, the version number, and we

// can also specify a required version of maya, though usually "Any" will do...

MFnPlugin fnPlugin(obj, "Paul Lumley", "1.0", "Any");

// only create callback if input updated OK

if(InitInput() && NumJoypads())

{

// get a pointer to the joypad

g_pJoypad = GetJoypad(0);

/// When creating the callback for the idle function, we need to specify a callback

/// type. In this case we are using "idle", however it can be anyone of the strings

/// that `scriptJob -listEvents` returns;

/// The second parameter is a pointer to the callback function. The third is a user

/// data parameter (which is explained in MEventMessage2 example). In this case

/// we can use NULL since we dont want any user data

///

g_Callback = MEventMessage::addEventCallback("idle", IdleFunc, NULL);

}

else {

std::cerr << "Could not initialise joypads\n";

return MS::kFailure;

}

return MS::kSuccess;

}

// UNINITIALIZEPLUGIN()

// This function is called once when our plugin is unloaded. We need

// to tell maya which mel funcs, nodes etc we are removing.

EXPORT MStatus uninitializePlugin(MObject obj)

{

// use the plugin function set to unload the plugin

MFnPlugin fnPlugin(obj);

if(g_pJoypad) {

/// make sure we delete the callback before the plugin quits !!!

/// Maya is likely to crash otherwise!

MEventMessage::removeCallback(g_Callback);

}

/// release DX8 or joystick handles for linux

FreeInput();

return MS::kSuccess;

}

APPENDIX E

Joypad.h Source Code

//--

/// \file
Joypad.h

/// \author
Rob Bateman

/// \date
12-jan-2004

/// \brief
This file provides a generic cross platform joypad interface for Win32 &

///

Linux. Generally the linux implimentation is not as cool as using DirectX,

///

you only really get hold of the values. Using force feedback is beyond Linux

///

at the moment. Oh well...

///

//--

#ifndef __JOYPAD__H__

#define __JOYPAD__H__

#ifdef WIN32

#pragma once

#pragma comment(lib,"dxguid.lib")

#pragma comment(lib,"dinput.lib")

#pragma comment(lib,"dinput8.lib")

#define WIN32_LEAN_AND_MEAN

#include <Windows.h>

#define DIRECTINPUT_VERSION 0x0800

#include "include/dinput.h"

#endif

#include <string>

#include <iostream>

/// make sure DWORD and LONG and defined in linux land

#ifndef WIN32

typedef long LONG;

typedef unsigned long DWORD;

#endif

/// this is the maximum extent

#define JP_MAX_EXTENT 32766.0f

// forward declaration

struct XInputJoypad;

//--

/// \brief
This function can be used to initialise the joypad lib

/// \return
true if OK, false if it fails

extern bool InitInput();

//--

/// \brief
This function returns the number of working joypads attached to the

///

computer.

///

extern unsigned int NumJoypads();

//--

/// \brief
This function returns a pointer to the requested Joypad or NULL if

///

no joypad is available.

///

extern XInputJoypad* GetJoypad(const unsigned int=0);

//--

/// \brief
You should call this to update the state of the joypad

/// \return
true if OK.

///

extern bool UpdateInputState();

//--

/// \brief
This function is called to destroy the input at the end of the game

///

extern void FreeInput();

//---

//---

/// \brief
Set of declarations and function c/o Paul Lumley

///

//---

///
\brief

///

struct XInputJoypad

{

//
INTERNAL STUPH

/// an enumeration to represent the various axes that may be available

enum eAxes

{

X_AXIS

= 0x00000001,

Y_AXIS

= 0x00000002,

Z_AXIS

= 0x00000004,

X_ROT_AXIS
= 0x00000008,

Y_ROT_AXIS = 0x00000010,

Z_ROT_AXIS = 0x00000020,

SLIDER_1 = 0x00000040,

SLIDER_2 = 0x00000080,

// force 32bit value

AXIS_LAST
= 0xFFFFFFFF

};

virtual bool Update() = 0;

// DEVICE INFO

virtual const char* const InstanceName() const = 0;

virtual const char* const ProductName() const = 0;

// DEVICE CAPABILITIES

///

/// this function returns the number of buttons available on the joypad

///

virtual const unsigned short NumButtons() const = 0;

///

/// this function returns the number of buttons available on the joypad

///

virtual const unsigned short NumPovs() const = 0;

///

/// the following functions allow you to check to see if the specified

/// axis is available on the joypad.

///

virtual bool HasX() const= 0;

virtual bool HasY() const = 0;

virtual bool HasZ() const = 0;

virtual bool HasXrot() const = 0;

virtual bool HasYrot() const = 0;

virtual bool HasZrot() const = 0;

virtual bool HasExtra1() const = 0;

virtual bool HasExtra2() const = 0;

//
BUTTONS

/// Array of buttons. The high-order bit of the byte is set if the

/// corresponding button is down, and clear if the button is up or does

/// not exist.

///

virtual const bool Button(const unsigned int& i) const = 0;

//
X AXIS

///
X-axis, usually the left-right movement of a stick.

virtual const LONG Xaxis() const = 0;

/// X-axis velocity.

virtual const LONG Xvelocity() const = 0;

/// X-axis acceleration.

virtual const LONG Xacceleration() const = 0;

/// X-axis force.

virtual const LONG Xforce() const = 0;

//
Y AXIS

///
Y-axis, usually the forward-backward movement of a stick.

virtual const LONG Yaxis() const = 0;

/// Y-axis velocity.

virtual const LONG Yvelocity() const = 0;

/// Y-axis acceleration.

virtual const LONG Yacceleration() const = 0;

/// Y-axis force.

virtual const LONG Yforce() const = 0;

//
Z AXIS

///
Z-axis, often the throttle control. If the joystick does not have this

/// axis, the value is 0.

virtual const LONG Zaxis() const = 0;

/// Z-axis velocity.

virtual const LONG Zvelocity() const = 0;

/// Z-axis acceleration.

virtual const LONG Zacceleration() const = 0;

/// Z-axis force.

virtual const LONG Zforce() const = 0;

//
X AXIS ROTATION

///
X-axis rotation. If the joystick does not have this axis, the value is 0.

virtual const LONG Xrot() const = 0;

/// X-axis angular velocity.

virtual const LONG XrotVelocity() const = 0;

/// X-axis angular acceleration.

virtual const LONG XrotAcceleration() const = 0;

/// X-axis torque.

virtual const LONG XrotForce() const = 0;

//
Y AXIS ROTATION

///
Y-axis rotation. If the joystick does not have this axis, the value is 0.

virtual const LONG Yrot() const = 0;

/// Y-axis angular velocity.

virtual const LONG YrotVelocity() const = 0;

/// Y-axis angular acceleration.

virtual const LONG YrotAcceleration() const = 0;

/// Y-axis torque.

virtual const LONG YrotForce() const = 0;

//
Z AXIS ROTATION

///
Z-axis rotation (often called the rudder). If the joystick does not have

/// this axis, the value is 0.

virtual const LONG Zrot() const = 0;

/// Z-axis angular velocity. .

virtual const LONG ZrotVelocity() const = 0;

/// Z-axis angular acceleration.

virtual const LONG ZrotAcceleration() const = 0;

/// Z-axis torque.

virtual const LONG ZrotForce() const = 0;

//
2 ADDITIONAL AXES

///
Two additional axis values (formerly called the u-axis and v-axis) whose

/// semantics depend on the joystick. Use the IDirectInputDevice8::GetObjectInfo

/// method to obtain semantic information about these values.

virtual const LONG ExtraAxes(const unsigned int& i) const = 0;

//Extra axis velocities.

virtual const LONG ExtraVelocities(const unsigned int& i) const = 0;

//Extra axis accelerations.

virtual const LONG ExtraAccelerations(const unsigned int& i) const = 0;

//Extra axis forces.

virtual const LONG ExtraForces(const unsigned int& i) const = 0;

//
POV

/// Direction controllers, such as point-of-view hats. The position is

/// indicated in hundredths of a degree clockwise from north (away from the

/// user). The center position is normally reported as -1; but see Remarks.

/// For indicators that have only five positions, the value for a controller

/// is -1, 0, 9,000, 18,000, or 27,000.

virtual const DWORD POV(const unsigned int& i) const = 0;

};

#ifdef WIN32

//--

/// The WIN32 implimentation of the joypad interface class.

///

class CJoypad : public XInputJoypad

{

public:

virtual bool Update();

// DEVICE INFO

const char* const InstanceName() const {

return m_Instance.c_str();

}

const char* const ProductName() const {

return m_Product.c_str();

}

// DEVICE CAPABILITIES

///

/// this function returns the number of buttons available on the joypad

///

const unsigned short NumButtons() const {

return m_nButtons;

}

///

/// this function returns the number of buttons available on the joypad

///

const unsigned short NumPovs() const {

return m_nPovs;

}

///

/// the following functions allow you to check to see if the specified

/// axis is available on the joypad.

///

bool HasX() const {

return ((m_iAxes & X_AXIS) != 0x00000000);

}

bool HasY() const {

return ((m_iAxes & Y_AXIS) != 0x00000000);

}

bool HasZ() const {

return ((m_iAxes & Z_AXIS) != 0x00000000);

}

bool HasXrot() const {

return ((m_iAxes & X_ROT_AXIS) != 0x00000000);

}

bool HasYrot() const {

return ((m_iAxes & Y_ROT_AXIS) != 0x00000000);

}

bool HasZrot() const {

return ((m_iAxes & Z_ROT_AXIS) != 0x00000000);

}

bool HasExtra1() const {

return ((m_iAxes & SLIDER_1) != 0x00000000);

}

bool HasExtra2() const {

return ((m_iAxes & SLIDER_2) != 0x00000000);

}

//
BUTTONS

/// Array of buttons. The high-order bit of the byte is set if the

/// corresponding button is down, and clear if the button is up or does

/// not exist.

///

const bool Button(const unsigned int& i) const {

return m_js.rgbButtons[i] != 0;

}

//
X AXIS

///
X-axis, usually the left-right movement of a stick.

const LONG Xaxis() const {

return m_js.lX;

}

/// X-axis velocity.

const LONG Xvelocity() const {

return m_js.lVX;

}

/// X-axis acceleration.

const LONG Xacceleration() const {

return m_js.lAX;

}

/// X-axis force.

const LONG Xforce() const {

return m_js.lFX;

}

//
Y AXIS

///
Y-axis, usually the forward-backward movement of a stick.

const LONG Yaxis() const {

return m_js.lY;

}

/// Y-axis velocity.

const LONG Yvelocity() const {

return m_js.lVY;

}

/// Y-axis acceleration.

const LONG Yacceleration() const {

return m_js.lAY;

}

/// Y-axis force.

const LONG Yforce() const {

return m_js.lFY;

}

//
Z AXIS

///
Z-axis, often the throttle control. If the joystick does not have this

/// axis, the value is 0.

const LONG Zaxis() const {

return m_js.lZ;

}

/// Z-axis velocity.

const LONG Zvelocity() const {

return m_js.lVZ;

}

/// Z-axis acceleration.

const LONG Zacceleration() const {

return m_js.lAZ;

}

/// Z-axis force.

const LONG Zforce() const {

return m_js.lFZ;

}

//
X AXIS ROTATION

///
X-axis rotation. If the joystick does not have this axis, the value is 0.

const LONG Xrot() const {

return m_js.lRx;

}

/// X-axis angular velocity.

const LONG XrotVelocity() const {

return m_js.lVRx;

}

/// X-axis angular acceleration.

const LONG XrotAcceleration() const {

return m_js.lARx;

}

/// X-axis torque.

const LONG XrotForce() const {

return m_js.lFRx;

}

//
Y AXIS ROTATION

///
Y-axis rotation. If the joystick does not have this axis, the value is 0.

const LONG Yrot() const {

return m_js.lRy;

}

/// Y-axis angular velocity.

const LONG YrotVelocity() const {

return m_js.lVRy;

}

/// Y-axis angular acceleration.

const LONG YrotAcceleration() const {

return m_js.lARy;

}

/// Y-axis torque.

const LONG YrotForce() const {

return m_js.lFRy;

}

//
Z AXIS ROTATION

///
Z-axis rotation (often called the rudder). If the joystick does not have

/// this axis, the value is 0.

const LONG Zrot() const {

return m_js.lRz;

}

/// Z-axis angular velocity. .

const LONG ZrotVelocity() const {

return m_js.lVRz;

}

/// Z-axis angular acceleration.

const LONG ZrotAcceleration() const {

return m_js.lARz;

}

/// Z-axis torque.

const LONG ZrotForce() const {

return m_js.lFRz;

}

//
2 ADDITIONAL AXES

///
Two additional axis values (formerly called the u-axis and v-axis) whose

/// semantics depend on the joystick. Use the IDirectInputDevice8::GetObjectInfo

/// method to obtain semantic information about these values.

const LONG ExtraAxes(const unsigned int& i) const {

return m_js.rglSlider[i];

}

//Extra axis velocities.

const LONG ExtraVelocities(const unsigned int& i) const {

return m_js.rglVSlider[i];

}

//Extra axis accelerations.

const LONG ExtraAccelerations(const unsigned int& i) const {

return m_js.rglASlider[i];

}

//Extra axis forces.

const LONG ExtraForces(const unsigned int& i) const {

return m_js.rglFSlider[i];

}

//
POV

/// Direction controllers, such as point-of-view hats. The position is

/// indicated in hundredths of a degree clockwise from north (away from the

/// user). The center position is normally reported as -1; but see Remarks.

/// For indicators that have only five positions, the value for a controller

/// is -1, 0, 9,000, 18,000, or 27,000.

const DWORD POV(const unsigned int& i) const {

return m_js.rgdwPOV[i];

}

//
Remarks

///

/// You must prepare the device for access to a joystick with extended

/// capabilities by calling the IDirectInputDevice8::SetDataFormat method,

/// passing the c_dfDIJoystick2 global data format variable.

/// If an axis is in relative mode, the appropriate member contains the

/// change in position. If it is in absolute mode, the member contains

/// the absolute axis position.

/// Some drivers report the centered position of the POV indicator as 65,535.

/// Determine whether the indicator is centered as follows:

///

/// BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

///

private:

/// \brief
ctor

CJoypad(void);

/// \brief
dtor

~CJoypad(void);

// the two enumeration callbacks are declared as friends so thay can

// initialise the devices.

//

friend BOOL CALLBACK EnumObjectsCallback(const DIDEVICEOBJECTINSTANCE*,VOID*);

friend BOOL CALLBACK EnumJoysticksCallback(const DIDEVICEINSTANCE*,VOID*);

friend bool InitInput();

friend bool UpdateInputState();

friend void FreeInput();

/// this variable holds packed bit flags for the axes that this device

/// supports

///

unsigned int m_iAxes;

/// the number of buttons on the device

///

unsigned short m_nButtons;

/// the number of point of view controls on the device

///

unsigned short m_nPovs;

/// This is a pointer to the device

///

LPDIRECTINPUTDEVICE8 m_pJoystick;

/// The directInput joystick state. This holds info about the

/// buttons pressed and d-pad / stick directions

///

DIJOYSTATE2 m_js;

std::string m_Product;

std::string m_Instance;

};

#else

//--

/// The Linux implimentation of the joypad interface class.

///

class CJoypad : public XInputJoypad

{

public:

// DEVICE INFO

const char* const InstanceName() const {

return name;

}

const char* const ProductName() const {

return name;

}

// DEVICE CAPABILITIES

///

/// this function returns the number of buttons available on the joypad

///

const unsigned short NumButtons() const {

return m_nButtons;

}

///

/// this function returns the number of buttons available on the joypad

///

const unsigned short NumPovs() const {

return 0;

}

///

/// the following functions allow you to check to see if the specified

/// axis is available on the joypad.

///

bool HasX() const {

return m_iAxes>=1;

}

bool HasY() const {

return m_iAxes>=2;

}

bool HasZ() const {

return m_iAxes>=3;

}

bool HasXrot() const {

return m_iAxes>=4;

}

bool HasYrot() const {

return m_iAxes>=5;

}

bool HasZrot() const {

return m_iAxes>=6;

}

bool HasExtra1() const {

return m_iAxes>=7;

}

bool HasExtra2() const {

return m_iAxes>=8;

}

//
BUTTONS

/// Array of buttons. The high-order bit of the byte is set if the

/// corresponding button is down, and clear if the button is up or does

/// not exist.

///

const bool Button(const unsigned int& i) const {

return Buttons[i] != 0;

}

//
X AXIS

///
X-axis, usually the left-right movement of a stick.

const LONG Xaxis() const {

return Axes[0];

}

/// X-axis velocity.

const LONG Xvelocity() const {

return 0;

}

/// X-axis acceleration.

const LONG Xacceleration() const {

return 0;

}

/// X-axis force.

const LONG Xforce() const {

return 0;

}

//
Y AXIS

///
Y-axis, usually the forward-backward movement of a stick.

const LONG Yaxis() const {

return Axes[1];

}

/// Y-axis velocity.

const LONG Yvelocity() const {

return 0;

}

/// Y-axis acceleration.

const LONG Yacceleration() const {

return 0;

}

/// Y-axis force.

const LONG Yforce() const {

return 0;

}

//
Z AXIS

///
Z-axis, often the throttle control. If the joystick does not have this

/// axis, the value is 0.

const LONG Zaxis() const {

return Axes[2];

}

/// Z-axis velocity.

const LONG Zvelocity() const {

return 0;

}

/// Z-axis acceleration.

const LONG Zacceleration() const {

return 0;

}

/// Z-axis force.

const LONG Zforce() const {

return 0;

}

//
X AXIS ROTATION

///
X-axis rotation. If the joystick does not have this axis, the value is 0.

const LONG Xrot() const {

return Axes[3];

}

/// X-axis angular velocity.

const LONG XrotVelocity() const {

return 0;

}

/// X-axis angular acceleration.

const LONG XrotAcceleration() const {

return 0;

}

/// X-axis torque.

const LONG XrotForce() const {

return 0;

}

//
Y AXIS ROTATION

///
Y-axis rotation. If the joystick does not have this axis, the value is 0.

const LONG Yrot() const {

return Axes[4];

}

/// Y-axis angular velocity.

const LONG YrotVelocity() const {

return 0;

}

/// Y-axis angular acceleration.

const LONG YrotAcceleration() const {

return 0;

}

/// Y-axis torque.

const LONG YrotForce() const {

return 0;

}

//
Z AXIS ROTATION

///
Z-axis rotation (often called the rudder). If the joystick does not have

/// this axis, the value is 0.

const LONG Zrot() const {

return Axes[5];

}

/// Z-axis angular velocity. .

const LONG ZrotVelocity() const {

return 0;

}

/// Z-axis angular acceleration.

const LONG ZrotAcceleration() const {

return 0;

}

/// Z-axis torque.

const LONG ZrotForce() const {

return 0;

}

//
2 ADDITIONAL AXES

///
Two additional axis values (formerly called the u-axis and v-axis) whose

/// semantics depend on the joystick. Use the IDirectInputDevice8::GetObjectInfo

/// method to obtain semantic information about these values.

const LONG ExtraAxes(const unsigned int& i) const {

return Axes[6+i];

}

//Extra axis velocities.

const LONG ExtraVelocities(const unsigned int& i) const {

return 0;

}

//Extra axis accelerations.

const LONG ExtraAccelerations(const unsigned int& i) const {

return 0;

}

//Extra axis forces.

const LONG ExtraForces(const unsigned int& i) const {

return 0;

}

//
POV

/// Direction controllers, such as point-of-view hats. The position is

/// indicated in hundredths of a degree clockwise from north (away from the

/// user). The center position is normally reported as -1; but see Remarks.

/// For indicators that have only five positions, the value for a controller

/// is -1, 0, 9,000, 18,000, or 27,000.

const DWORD POV(const unsigned int& i) const {

return 0;

}

private:

int fd;

/// this variable holds packed bit flags for the axes that this device

/// supports

///

unsigned char m_iAxes;

/// the number of buttons on the device

///

unsigned char m_nButtons;

int version;

char name[128];

/// \brief
ctor

CJoypad(void);

/// \brief
dtor

~CJoypad(void);

short Axes[10];

bool Buttons[20];

bool Update();

//

friend bool InitInput();

friend bool UpdateInputState();

friend void FreeInput();

};

#endif

#endif

APPENDIX F

Joypad.cpp Source Code

#include "Joypad.h"

#include <vector>

#ifdef WIN32

//

//
Defines, constants, and global variables

//

#define SAFE_DELETE(p) { delete (p); (p)=NULL; }

#define SAFE_RELEASE(p) { if(p) { (p)->Release(); (p)=NULL; } }

CJoypad::CJoypad(void) : m_iAxes(0),m_nButtons(0),m_nPovs(0),m_pJoystick(0)

{

memset(&m_js,0,sizeof(DIJOYSTATE2));

}

CJoypad::~CJoypad(void)

{

//
Unacquire the device one last time just in case

//
the app tried to exit while the device is still acquired.

//

if(m_pJoystick)

m_pJoystick->Unacquire();

//
Release any DirectInput objects.

//

SAFE_RELEASE(m_pJoystick);

}

bool CJoypad::Update()

{

//
Poll the device to read the current state

//

HRESULT hr = m_pJoystick->Poll();

if(FAILED(hr))

{

//
DInput is telling us that the input stream has been

//
interrupted. We aren't tracking any state between polls, so

//
we don't have any special reset that needs to be done. We

//
just re-acquire and try again.

//

do

{

hr = m_pJoystick->Acquire();

}

while(hr == DIERR_INPUTLOST);

//
hr may be DIERR_OTHERAPPHASPRIO or other errors. This

//
may occur when the app is minimized or in the process of

//
switching, so just try again later

//

return true;

}

// Get the input's device state

//

if(FAILED(hr = m_pJoystick->GetDeviceState(sizeof(DIJOYSTATE2), &m_js)))

{

std::cerr << "ERROR: [CJoypad] The device should have been acquired during the Poll()" << std::endl;

return false;

}

return true;

}

//

//
Function Prototypes

//

BOOL CALLBACK EnumObjectsCallback(const DIDEVICEOBJECTINSTANCE* pdidoi, VOID* pContext);

BOOL CALLBACK EnumJoysticksCallback(const DIDEVICEINSTANCE* pdidInstance, VOID* pContext);

LPDIRECTINPUT8 g_pDI = NULL;

LPDIRECTINPUTDEVICE8 g_pJoystick

= NULL;

std::vector< XInputJoypad* > g_aJoypads;

CJoypad* g_jp=NULL;

//

/// \brief
Initialize the DirectInput variables.

/// \return
true if OK

///

bool InitInput()

{

HRESULT hr;

//
Register with the DirectInput subsystem and get a pointer

//
to a IDirectInput interface we can use.

//
Create a DInput object

//

if(FAILED(hr = DirectInput8Create(GetModuleHandle(NULL), DIRECTINPUT_VERSION,

IID_IDirectInput8, (VOID**)&g_pDI, NULL)))

return false;

//
Look for a simple joystick we can use for this sample program.

//

if(FAILED(hr = g_pDI->EnumDevices(DI8DEVCLASS_GAMECTRL,

EnumJoysticksCallback,

NULL, DIEDFL_ATTACHEDONLY)))

return false;

return true;

}

//

/// \brief
Called once for each enumerated joystick. If we find one, create a

///

device interface on it so we can play with it.

/// \param
pdidInstance
-

/// \param
pContext

-

/// \return
DIENUM_CONTINUE or DIENUM_STOP

///

BOOL CALLBACK EnumJoysticksCallback(const DIDEVICEINSTANCE* pdidInstance,

VOID* pContext)

{

HRESULT hr;

// Obtain an interface to the enumerated joystick.

hr = g_pDI->CreateDevice(pdidInstance->guidInstance, &g_pJoystick, NULL);

// If it failed, then we can't use this joystick. (Maybe the user unplugged

// it while we were in the middle of enumerating it.)

if(FAILED(hr))

return DIENUM_CONTINUE;

//
Set the data format to "simple joystick" - a predefined data format

//

//
A data format specifies which controls on a device we are interested in,

//
and how they should be reported. This tells DInput that we will be

//
passing a DIJOYSTATE2 structure to IDirectInputDevice::GetDeviceState().

//

if(FAILED(hr = g_pJoystick->SetDataFormat(&c_dfDIJoystick2)))

{

g_pJoystick

= NULL;

return false;

}

//
--- > This will fail with glut under Win32

//

//
Set the cooperative level to let DInput know how this device should

//
interact with the system and with other DInput applications.

//

/*
if(FAILED(hr = g_pJoystick->SetCooperativeLevel(NULL, DISCL_EXCLUSIVE |

DISCL_FOREGROUND)))

{

g_pJoystick

= NULL;

return false;

}*/

g_jp = new CJoypad;

g_jp->m_pJoystick = g_pJoystick;

//
Enumerate the joystick objects. The callback function enabled user

//
interface elements for objects that are found, and sets the min/max

//
values property for discovered axes.

//

if(FAILED(hr = g_jp->m_pJoystick->EnumObjects(EnumObjectsCallback, NULL, DIDFT_ALL)))

{

g_pJoystick

= NULL;

delete g_jp;

return false;

}

DIDEVCAPS diDevCaps;

//
query the device capabilities to find out how many buttons we have

//

diDevCaps.dwSize = sizeof(DIDEVCAPS);

if(FAILED(g_jp->m_pJoystick->GetCapabilities(&diDevCaps)))

{

g_pJoystick

= NULL;

delete g_jp;

return false;

}

g_jp->m_nButtons = static_cast<unsigned short>(diDevCaps.dwButtons);

g_aJoypads.push_back(g_jp);

g_pJoystick

= NULL;

// Stop enumeration. Note: we're just taking the first joystick we get. You

// could store all the enumerated joysticks and let the user pick.

return DIENUM_CONTINUE;

}

//

/// \brief
Callback function for enumerating objects (axes, buttons, POVs) on a

///

joystick. This function enables user interface elements for objects

///

that are found to exist, and scales axes min/max values.

/// \param
pdidInstance
-

/// \param
pContext

-

/// \return
DIENUM_CONTINUE or DIENUM_STOP

///

BOOL CALLBACK EnumObjectsCallback(const DIDEVICEOBJECTINSTANCE* pdidoi,

 VOID* pContext)

{

static int nSliderCount = 0; // Number of returned slider controls

static int nPOVCount = 0; // Number of returned POV controls

// For axes that are returned, set the DIPROP_RANGE property for the

// enumerated axis in order to scale min/max values.

if(pdidoi->dwType & DIDFT_AXIS)

{

DIPROPRANGE diprg;

diprg.diph.dwSize = sizeof(DIPROPRANGE);

diprg.diph.dwHeaderSize = sizeof(DIPROPHEADER);

diprg.diph.dwHow = DIPH_BYID;

diprg.diph.dwObj = pdidoi->dwType; // Specify the enumerated axis

diprg.lMin = -32766;

diprg.lMax = +32766;

// Set the range for the axis

if(FAILED(g_pJoystick->SetProperty(DIPROP_RANGE, &diprg.diph)))

return DIENUM_STOP;

}

 // Set the UI to reflect what objects the joystick supports

 if (pdidoi->guidType == GUID_XAxis)

 {

g_jp->m_iAxes |= XInputJoypad::X_AXIS;

 }

 if (pdidoi->guidType == GUID_YAxis)

 {

g_jp->m_iAxes |= XInputJoypad::Y_AXIS;

 }

 if (pdidoi->guidType == GUID_ZAxis)

 {

g_jp->m_iAxes |= XInputJoypad::Z_AXIS;

 }

 if (pdidoi->guidType == GUID_RxAxis)

 {

g_jp->m_iAxes |= XInputJoypad::X_ROT_AXIS;

 }

 if (pdidoi->guidType == GUID_RyAxis)

 {

g_jp->m_iAxes |= XInputJoypad::Y_ROT_AXIS;

 }

 if (pdidoi->guidType == GUID_RzAxis)

 {

g_jp->m_iAxes |= XInputJoypad::Z_ROT_AXIS;

 }

 if (pdidoi->guidType == GUID_Slider)

 {

 switch(nSliderCount++)

 {

 case 0 :

g_jp->m_iAxes |= XInputJoypad::SLIDER_1;

 break;

 case 1 :

g_jp->m_iAxes |= XInputJoypad::SLIDER_1;

g_jp->m_iAxes |= XInputJoypad::SLIDER_2;

 break;

 }

 }

 if (pdidoi->guidType == GUID_POV)

 {

g_jp->m_nPovs = nPOVCount+1;

 }

return DIENUM_CONTINUE;

}

//

/// \brief
Get the input device's state

/// \return
true if OK

///

bool UpdateInputState()

{

std::vector< XInputJoypad* >::iterator it = g_aJoypads.begin();

for(; it != g_aJoypads.end(); ++it)

{

(*it)->Update();

}

return true;

}

//

/// \brief
Cleans up Direct Input

///

void FreeInput()

{

//
Unacquire the device one last time just in case

//
the app tried to exit while the device is still acquired.

//

if(g_pJoystick)

g_pJoystick->Unacquire();

//
Release any DirectInput objects.

//

std::vector< XInputJoypad* >::iterator it = g_aJoypads.begin();

for(; it != g_aJoypads.end(); ++it)

{

delete *it;

}

SAFE_RELEASE(g_pDI);

}

#else

#include <sys/ioctl.h>

#include <sys/time.h>

#include <sys/types.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include <linux/joystick.h>

std::vector< XInputJoypad* > g_aJoypads;

/// \brief
dtor

CJoypad::~CJoypad(void) {

close(fd);

}

#define NAME_LENGTH 128

CJoypad::CJoypad() : m_iAxes(2), m_nButtons(2) {

version = 0x000800;

sprintf(name,"Unknown");

for(unsigned int i=0;i!=10;++i)

Axes[i]=0;

for(unsigned int j=0;j!=20;++j)

Buttons[j]=false;

}

bool CJoypad::Update() {

struct js_event js;

while (read(fd,&js,sizeof(struct js_event)) >= 0) {

switch(js.type) {

case JS_EVENT_BUTTON:

Buttons[js.number] = js.value;

break;

case JS_EVENT_AXIS:

Axes[js.number] = js.value;

break;

default:

return false;

};

}

return true;

}

bool UpdateInputState()

{

std::vector< XInputJoypad* >::iterator it = g_aJoypads.begin();

for(; it != g_aJoypads.end(); ++it)

{

(*it)->Update();

}

}

//

/// \brief
Initialize the DirectInput variables.

/// \return
true if OK

///

bool InitInput()

{

bool ret=false;

int fd;

if ((fd = open("/dev/js0", O_RDONLY)) > 0) {

CJoypad* ptr = new CJoypad;

ioctl(fd, JSIOCGVERSION, &ptr->version);

ioctl(fd, JSIOCGAXES, &ptr->m_iAxes);

ioctl(fd, JSIOCGBUTTONS, &ptr->m_nButtons);

ioctl(fd, JSIOCGNAME(NAME_LENGTH), ptr->name);

fcntl(fd, F_SETFL, O_NONBLOCK);

ptr->fd = fd;

g_aJoypads.push_back(ptr);

ret=true;

}

if ((fd = open("/dev/js1", O_RDONLY)) > 0) {

CJoypad* ptr = new CJoypad;

ioctl(fd, JSIOCGVERSION, &ptr->version);

ioctl(fd, JSIOCGAXES, &ptr->m_iAxes);

ioctl(fd, JSIOCGBUTTONS, &ptr->m_nButtons);

ioctl(fd, JSIOCGNAME(NAME_LENGTH), ptr->name);

fcntl(fd, F_SETFL, O_NONBLOCK);

ptr->fd = fd;

g_aJoypads.push_back(ptr);

ret=true;

}

if ((fd = open("/dev/js2", O_RDONLY)) > 0) {

CJoypad* ptr = new CJoypad;

ioctl(fd, JSIOCGVERSION, &ptr->version);

ioctl(fd, JSIOCGAXES, &ptr->m_iAxes);

ioctl(fd, JSIOCGBUTTONS, &ptr->m_nButtons);

ioctl(fd, JSIOCGNAME(NAME_LENGTH), ptr->name);

fcntl(fd, F_SETFL, O_NONBLOCK);

ptr->fd = fd;

g_aJoypads.push_back(ptr);

ret=true;

}

if ((fd = open("/dev/js3", O_RDONLY)) > 0) {

CJoypad* ptr = new CJoypad;

ioctl(fd, JSIOCGVERSION, &ptr->version);

ioctl(fd, JSIOCGAXES, &ptr->m_iAxes);

ioctl(fd, JSIOCGBUTTONS, &ptr->m_nButtons);

ioctl(fd, JSIOCGNAME(NAME_LENGTH), ptr->name);

fcntl(fd, F_SETFL, O_NONBLOCK);

ptr->fd = fd;

g_aJoypads.push_back(ptr);

ret=true;

}

return ret;

}

//

/// \brief
Cleans up Direct Input

///

void FreeInput()

{

std::vector< XInputJoypad* >::iterator it = g_aJoypads.begin();

for(; it != g_aJoypads.end(); ++it)

{

delete (*it);

}

g_aJoypads.resize(0);

}

#endif

unsigned int NumJoypads() {

return static_cast<unsigned int>(g_aJoypads.size());

}

XInputJoypad* GetJoypad(const unsigned int ref) {

if(ref < NumJoypads())

return g_aJoypads[ref];

return NULL;

}

� A Brief History of Motion Capture for Animation: David J Sturman- ACM

� Maya Character Animation Second Edition: Choi – Sybex 2004 p371

� Maya Character Animation Second Edition: Choi – Sybex 2004 p375-380

� Maya Character Animation Second Edition: Choi – Sybex 2004 p381

� Maya Character Animation Second Edition: Choi – Sybex 2004 p383

	
	13
	NCCA 2005

