
Simulating Watercolour Painting
Anders Langlands

NCCA Bournemouth University

Abstract
In this paper I describe the research and

development for a real-time watercolour
painting program. I present my research into
related areas of interest, such as fluid dynamics,
cellular automata and Kubelka-Munk theory. I
look closely at two existing systems for
simulating the properties of watercolour paints,
and assess their possible applicability to real-
time painting. I go on to develop two programs
to test my ideas, and provide the design for a
third that should solve the problems encountered
with previous implementations.

1. Introduction
In recent years, much attention has turned to

reproducing natural-media effects for digital
painting. As processing power has advanced, so
has the complexity and believability of
algorithms used to create these effects.

Watercolour is perhaps the hardest natural
medium to simulate. Oil paints and hard media
such as pastels and pencil can effectively be
described in the immediate contact reaction
between the artist’s tool and the paper’s surface.
Watercolour painting, on the other hand,
depends heavily upon the motion of the pigment
solution applied to the paper. This process
continues after the artist’s brush has left the
paper and, depending on the environment, the
system will continue to evolve for some time
after the artist has finished painting. It is for this
reason that simulating watercolour painting
convincingly presents such a challenge.

1.1 Related Work
Small (1991) presents a method for simulating

watercolour effects using a system of cellular
automata on a Connection Machine. Curtis et al
(1997) also look at Small’s work and extend
Small’s system to incorporate the shallow-water
equations of fluid dynamics and Kubelka-Munk
theory for a more accurate result. The resulting

images [Fig.1.1] are pleasing to the eye and
exhibit many of the features of real watercolour
paintings.

Figure 1.1 Realistic watercolourisation of a low-
resolution video frame by Curtis’s system.

1.2 Overview
In the next section I first present my research

into traditional watercolour techniques, the
properties of watercolour paints and modelling
the optical properties of the paint for computer
display using Kubelka-Munk theory. In section
3 I then present my research into cellular
automata and fluid dynamics, and how these
apply to the simulation of the watercolour
medium. In section 4 I make a detailed analysis
of the methods described by Small and Curtis et
al, and assess their applicability to the problem
of interactive simulation of watercolour, I also
describe the implementation of a simple painting
program in C++ using Small’s method as a
template. In section 5 I go on to describe my
first proposed method using particles, and also
describe the partial implementation of this
method. In section 6 I make an assessment of the
work produced so far, before describing the
possible design of a realistic, interactive
watercolour painting program in section 7. In
section 8 I assess my success in carrying out this
project and draw my conclusions.

2. Research
2.1 Traditional watercolour

Watercolour as a medium has been in use for
over 30,000 years. Watercolour as we know it
today first made its successful transition to paper
(as opposed to walls) in the 15th Century, one of
the first purveyors being Albrecht Dürer.

Watercolour is best known in the paintings of
18th and 19th Century England, made famous by
such artists as Turner and Constable (Parramón,
1993).

San Giorgio Maggiroe from the Customs House by
J.M.W. Turner

The Piece of Turf by Albrecht Dürer

The paint itself consists of minute pigment
grains held in suspension in a mixture of water
and binding agent. The binding agent helps the
pigment to adhere to the paper’s surface (Curtis
et al, 1997).

Curtis et al (1997) state that it is just as
important to effectively simulate the effects
watercolour produces as it is to simulate its
physical properties.

Bolton (2000) and Harnson (2000) list the
basic techniques and effects as follows:

• Wash: areas of colour applied to dry

or wet paper with a well-loaded,
large brush. A wash can be flat: a
single colour, graded: one colour
applied in a smooth blend from dark
to light, or variegated: a smooth
blend of two or more colours.

• Wet-into-wet: paint is applied to a
damp or wet surface giving a
“ghostly” effect caused by the
patterns of the water’s flow.

• Wet-onto-dry: paint is applied onto
dry paper or already dry paint.

• Glazing: when thin layers of colour
are applied over the top of one
another, the result is a rich,
translucent tone.

• Dry-brush: by blotting the brush to
remove most of the water and
drawing over the paper at the right
angle, colour is deposited only on the
high points of the paper’s surface
creating a rough, textural effect.

• Granulation is caused by the
pigments settling down into the
recesses in the paper’s surface.
Different paints exhibit more or less
of this effect depending on the
weight of their pigments.

Curtis et al (1997) also make specific mention

of edge-darkening. When wet paint is applied
onto a dry surface, evaporation at the edges of
the stroke causes the paint to flow outwards,
causing more pigment to be deposited at the
edges of the stroke. This is also a characteristic
feature of watercolour, which a skilled artist
knows how to control.

From looking at these effects and their use by
professional artists in watercolour paintings, one
can break down watercolour into two separate
processes: flow and optical composition. Flow
is governed by the dynamics of the water in
which the pigment is suspended. The way in
which the water moves over the paper is
extremely important for all of the effects listed
above, and any simulation of watercolour
painting must either simulate water flow
accurately, or believably fake its end results.
Optical composition is the description of how
the pigments in the paint are combined whether
by mixing or glazing, and how light reflects off
them to produce the image in the viewer’s eye.
In the next section I investigate Kubelka-Munk
theory as a method to accurately describe the

optical properties of pigmented materials such as
paints. I then go on to investigate fluid dynamics
and assess its suitability for describing flow
effects in a watercolour painting application.

2.2 Kubelka-Munk Theory
The colour model with which computer

graphics artists are most familiar is the additive
RGB triplet model, corresponding to the red,
green and blue electron guns found in a common
television set or computer monitor. This model
is in direct contrast to the way in which media
such as watercolour, which is nearly transparent,
affect light passing through them. Filtering
media are subtractive. That is to say that
combining a red filter, a blue filter and a green
filter will produce black. In contrast, combining
red, green and blue in the additive model will
produce white.

Subtractive colour can be calculated simply by
using the CMY triplet model, which is a linear
transformation of the RGB colour space using
the formula:

CCMY = [1 1 1] - CRGB

The results of any colour model used in a
paint application must be transformed back to
RGB space for projection on a monitor, so using
the CMY model is very attractive for computer
graphics applications because of its simplicity.

However, subtractive colour mixing assumes
that the material in question is transparent
enough that light can pass straight through. For
thin washes of watercolour paints, one can often
assume that this is the case (Haase and Meyer,
1991), but it will not always be so. This is
because suspended particles of pigment will
reflect and scatter incoming light in an
unpredictable way [see Fig. 2.1 below].

Figure 2.1 (Haase and Meyer, 1991): Pigment
particles in the paint medium obstruct and scatter
back incoming light, making a simple reflectance
model inadequate.

Kubelka-Munk theory (KM theory) describes
the scattering of light from pigmented materials.
It provides equations to calculate the overall
reflected colour of a particular pigment for
which two reflectance coefficients, K and S, are
known. Haase and Meyer (1991) define the
reflectance equation as:

This result is a spectral curve in CIE XYZ
colour space, which can then be converted to
RGB for display on a monitor (Haase and
Meyer, 1991).

It is not terribly intuitive for an artist to have
to specify colours using K and S values. A
preferential method would be to have the artist
specify a desired colour and have the computer
calculate the appropriate coefficients for them.
Haase and Meyer (1991) achieve this using a
standard colour picker and an iterative least-
squares method to select the closest matching K
and S values. Curtis et al (1997) take an
alternative and more complex approach, asking
the user of their application to define what their
colour should look like over white and black
swatches. This is fine if one has the desired
pigments handy for reference, but again is
unintuitive for the computer artist.

KM theory provides an accurate model for
simulating pigmented materials such as paint.
Indeed, Curtis et al report accurate results in
their painting system. However, for the specific
problem of watercolour, KM calculations may
be wasteful. Haase and Meyer suggest that
watercolour may be accurately simulated using
the simple subtractive CMY model, but this
introduces its own problems. I address the
limitations of this colour model and formulate
my own colour model for watercolour painting
in section 7.2.

3. Fluid Dynamics
I present here a very brief overview of a

mathematical model of fluid motion, specifically
the Navier-Stokes equations for incompressible
flow in order to familiarise the reader with the
problem.

The motion of a fluid depends on the
interaction between microscopic fluid particles.
These discrete events give rise to apparently

continuous macroscopic behaviour. To put it
another way, the collisions between the
microscopic fluid particles look like smooth,
rolling fluid motion when viewed at a large
enough scale. It is this assumption that allows
the derivation of a mathematical model for
describing fluid motion.

The Navier-Stokes equations for
incompressible flow look like this (Marsden and
Chorin, 1979):

Where p is the pressure of the fluid, ρ = ρ0 is
the mass of the fluid and is constant (the
principle of conservation of mass is necessary to
derive these equations), and u is the velocity of
the fluid.

Stam (1999) presents an alternative, compact
vector notation for the Navier-Stokes equations
(only slightly more comprehensibly) as:

Where u is the velocity of the fluid, ρ the
density, v the coefficient of kinematic viscosity
and f is an external force that in most cases will
be zero. Both forms of the equations also
enforce the boundary condition, u=0 at the edges
of the simulation volume. What this means is
that the simulation must be entirely enclosed and
fluid may not “leak out”. Alternatively, the
simulation may be wrapped around so that fluid
leaving one side of the bounding volume re-
appears on the other.

What these equations each say is that provided
one knows the initial values for the velocity and
the pressure, the state of the fluid can be evolved
linearly over time (Stam, 1999), to put it another
way, the motion of a given fluid can be
calculated by stepping forwards through time
and applying the Navier-Stokes equations each
time step. The “look” of the fluid depends
entirely on its viscosity. For a watercolour
simulation, the density value can be interpreted
as the amount of pigment in the fluid at that
point.

The main problems in simulating fluid motion
on a computer arise because the equations of
motion must be chopped up into discrete steps of
space and time in order to be simulated. Too
large a time step and the simulation may “blow
up”; too large a space step and the simulation
will not yield accurate results. For engineering
purposes it is necessary that extremely accurate
results be obtained. For computer visualisation
applications however, accuracy can be sacrificed
for speed and stability as long as the results look
like fluid motion to the casual observer (Stam,
1999).

In his 1999 paper, “Stable Fluids”, Jos Stam
presents just such a system [see accompanying
CD-ROM for Andrew Nealen’s 2D FFT
implementation of Stam’s method]. The fluid
volume is described by a grid of fluid cells, or
“voxels”. Each voxel contains a known density
and velocity value. Each time step, the solver
updates the density and velocity values of each
voxel in accordance with the Navier-Stokes
equations.

The general Navier-Stokes equations are
reduced to separate numerical methods covering
each of the effects of viscosity, convection and
velocity within the fluid to give a fast result.
Stam ensures stability within the solver by back-
tracing, essentially asking the question each time
step, “Which of these possible results can be
mapped back onto my initial data”. The result is
a fast, stable solver capable of producing very
realistic, fluid-like motions.

4. Cellular Automata
Cellular automata (CA) are simple

mathematical idealisations of complex systems.
They consist of a lattice of discrete, identical
sites (cells) holding arbitrary values. These
values develop over discrete time steps,
governed by rules determining each cell’s
interaction with its neighbours. (Wolfram,
1983). The idea is that given simple,
microscopic rules, the cellular automata will
produce complex, macroscopic behaviour over
time.

A good basic example of cellular automata at
work is Steven Conway’s game, “Life”. Conway
uses a cellular automaton to produce behaviours
analogous to the growth of bacteria.

In this model, each cell can either be alive or
dead, represented as a binary 0 or 1. Each time-
step, a cell’s state is modified depending on the
state of its neighbours. Gardner (1970) lists the
rules as follows:

1. Survivals. Every cell with two or three
neighbouring living cells survives for
the next generation.

2. Deaths. Each cell with four or more
living neighbours dies from
overpopulation. Every cell with one
living neighbour or none dies from
isolation.

3. Births. Each empty cell adjacent to
exactly three neighbours—no more, no
fewer—is a birth cell. It becomes alive
on the next time step.

Given these three rules, Life produces
complex, self-organizing, repeating and even
self-replicating “organisms” [see the
accompanying CD-ROM for my own C++
implementation of Life), as well as a guide to
some of the more interesting patterns].

4.2 A Cellular Automaton Model For
Watercolour

In his 1990 paper, “Modelling Watercolor by
Simulating Diffusion, Pigment and Paper
Fibers”, David Small approaches the problem by
approximating only those properties of fluid
motion that are important for the look of
watercolour paint, and ignoring the rest. He
assumes that simulating the rolling, turbulent
motion of the fluid is not necessary for painting
applications.

Small’s set-up consists of a two-layered,
rectangular cellular automaton. Each cell holds
values denoting the amount of paint present in
that cell, represented as a quantity of fluid and a
quantity of pigment. Each cell also holds values
for the amount of pigment and fluid that has
been absorbed into the paper at that cell. The
motion of paint on top of the paper, “Surface
effects”, and the motion of the paint within the
paper “Substrate effects” are dealt with
separately, and paint can move from the surface
layer into the substrate layer.

The user adds fluid and pigment interactively
at the start of the simulation and then watches
the results evolve over time.

The movement of paint in the surface layer is
defined by a displacement force, D, which is
calculated for each cell in both the horizontal
and vertical directions and consists of the forces
of surface tension and “spreading” (diffusion).
Essentially this means that water in a particular
cell is pulled toward water over a 10-cell region,
and also tries to balance the level of water in its
direct neighbours. In the surface layer pigment
moves along with the water in equal proportion
to it.

Each time step, a new surface fluid value is
calculated for each cell by first subtracting from
the last step’s value the fluid moving out of the
cell due to the displacement force, D, and then
adding on the fluid moving into the cell from its
neighbours due to their displacement forces.
Small constructs similar equations for the fluid
and pigment moving in the substrate layer, and
the absorption of pigment from the surface layer
into the substrate layer; he also takes account of
evaporation by simply removing a small
quantity of fluid from each cell each step.

I implemented the techniques outlined by
Small in a simple watercolour-painting program,
with a view to improving the system to handle
more effects. The simple image below [Fig. 3.2]
shows an example of what can be produced.

Figure 3.2 An image produced using the cellular
automaton watercolour system. While mimicking
some of the features of watercolour painting, the
system suffers from visual artefacts, as well as being
hard to control.

The cellular automaton technique can

accurately describe wet-in-wet painting.
Unfortunately it gives undesirable visual
artefacts (the grids of darker spots seen in the
image above). These are caused by the fact that
paint only ever moves horizontally or vertically
in the simulation, and so the paint tends to group
in dark grid patterns due to surface spreading. It
is possible to reduce the strength of these
artefacts by adjusting the surface tension and
spreading parameters, but this causes the
simulation to behave in unexpected ways.

Small’s method is also limited to simulating
wet-in-wet painting. The paint spreads over all
cells in the simulation, as if one were adding
paint to an already-wet surface. This makes it
unsuitable for wet-on-dry painting and dry brush
techniques.

However the biggest limitation of Small’s
method is its speed. In order to get it to run
interactively, the simulation’s cellular
automaton had to be reduced in size to 60 cells
square. In a 600 pixel square window, this
means each cell is represented onscreen by 100
pixels. To produce detailed and believable
watercolour painting, one pixel would need to be
mapped to one cell at most, and preferably four
to allow multi-sampled anti-aliasing. Rewriting
to take advantage of multi-processor
architectures could increase the processing
speed of the automaton, but this is a special case
and probably would not give the necessary
speed boost anyway.

There are several ways in which the look of
the simulation could easily be improved. For
instance, a height field could be used to simulate
the motion of the paint over the texture of the
paper, simply by adding in an extra force to the
displacement calculation. The grid-like visual
artefacts apparent in the picture above could be
removed by using a hexagonal cellular
automaton similar to that described by Wolfram
in his 1986 paper “Cellular Automaton Fluids:
Basic Theory”. However, this would further
complicate the simulation, adding extra
calculations for each time step, and for mapping
the hexagonal grid back onto a rectangular
display.

I now look at another technique, based on
Small’s, which includes a more physically-
accurate fluid model and pigment model to
produce a better visual result.

4.3 A More Accurate Model
In their 1997 paper, “Computer Generated

Watercolour”, Curtis et al describe another
cellular–automaton-based model building on
Small’s approximation to include more realistic
fluid and pigment simulation. As in Small’s
model, Curtis et al’s model uses three layers of
simulation, which they define as the shallow-
water layer, the pigment-deposition layer, and
the capillary layer [Fig 3.3, below].

An important addition Curtis et al make to
Small’s model is that of a height field to
simulate the texture of the paper, which is
generated by standard pseudo-random noise
functions. The height field is used to define a
gradient field that affects the motion of the
shallow-water layer.

Figure 3.3 (Curtis et al, 1997) Curtis breaks the
watercolour simulation down into three discrete
“layers” or processes.

The shallow-water layer is an extension of
Small’s surface layer and is controlled by a fluid
dynamics system to move the water, and hence
the pigment suspended in it, around the paper.
As described in section 2, a fluid simulation
must enforce appropriate boundary conditions:
in this case no fluid must move across the
boundary of the simulation. Curtis et al achieve
this by using a wet-area mask. This is simply a
field of Boolean values defining whether or not
the paper is wet at that point and is itself defined
by the user’s brushstrokes. Curtis et al simply
set the velocity of water in any cell not inside
the wet-area mask to zero. In a similar way to
the method suggested by Small, Curtis et al
move the pigment in the shallow water layer
across cell boundaries in proportion to the water
flow. Edge darkening is achieved by reducing
water pressure at the boundary of the wet-area
mask, causing water and pigment from the
inside of the wet area to flow to the outside, thus
producing darker edges.

The pigment-deposition layer controls
pigment adsorption and “desorption”: the
movement of pigment from the water into the
paper, and the movement of pigment from the
paper back into the paint suspension. Curtis et al
again use a more complex simulation of this
process to achieve more believable results
modelling the “staining power” and “density” of
each pigment as well as using the height of the
paper to scale the amount of pigment transferred
(Curtis et al, 1997).

The capillary layer controls the movement of
water within the paper itself and is analogous to
Small’s substrate layer. In Curtis et al’s model it
is only used to simulate back runs. Curtis et al
use a very similar model to Small’s for this
layer.

5. Tackling The Problem Of Real-Time
Interaction

As has been stated in the previous section, the
biggest limitation of both Small’s and Curtis et
al’s methods are the speed of simulation. While
Curtis et al achieve very realistic and
aesthetically pleasing images, his simulation—
running at seven hours for a 640x480 image—is
far too slow for an interactive application. Curtis
et al allow the user to place the colour and water
on the paper first, before running the simulation
to produce the final image, but this seems
unintuitive: artists rely on seeing the properties
of watercolour evolve before their eyes as they
place brushstrokes.

Clearly a strict physical simulation cannot
produce acceptable results in real-time at today’s
processor speeds. It would seem that the biggest
single speed limitation is caused by the fact that
each cell of the cellular automaton must be
visited each time step. This is especially
apparent in my implementation based on Small’s
method. When the size of the CA is increased to
say 600 cells square the frame rate plummets to
about 10fps, just for drawing the canvas with no
simulation. This is because the program must
visit each of the 360,000 cells, convert their
CMY-colour values to RGB and then draw a
square at that point. Forcing each cell to be one
pixel in size and then copying the colour values
into a pixel array ready to be drawn to the frame
buffer could gain a small speed improvement. It
is important to realise however that it is the
simple act of visiting each cell of the CA and
performing some calculation there—no matter
how simple—that is the limiting factor.

Therefore the most obvious way to improve
the speed of the application would be to not visit
every cell. One way to do this would be to keep
a list of “dirty” cells and then each time step
only those cells that need to be changed could be
visited. However, in a painting application the
whole canvas would quickly become “dirty” and
so the speed improvement gained is quickly lost
after a few brushstrokes.

It therefore becomes apparent that a
completely different methodology is needed, the
most obvious being a particle system. Particle
systems have been successfully used to model a
huge variety of natural phenomena such as fire,
smoke and water.

What is important to the problem of
watercolour simulation is that particle systems
can easily be made to follow arbitrary vector
fields, such as the gradient field describing a
paper texture; they are easily understandable
models of dynamic phenomena; and they are
very fast to calculate given some common-sense
optimisations.

I now describe my own proposed model for
watercolour simulation using particle systems.

5.1 Modelling Watercolour Painting Using
Particles

Particle systems cannot directly model fluid
motion. Fluid dynamics calculations depend on
the assumption that flow is continuous (Marsden
and Chorin, 1979) and particles are, by their
very nature, discrete.

In this case however, it is not necessary to
have even a moderately accurate simulation as
long as the result looks pleasing to the casual
observer. In fact it is perfectly adequate to have
the particles’ motion defined by a static vector
field representing the texture of the paper, as this
is the most important effect on the fluid’s
movement.

In the proposed model the paper texture is
represented by an array of vectors, T, laid over
the top of the image buffer, I. The vector, Tx,y,
for each pixel, Ix,y, is calculated from a height
map, H, representing the paper’s surface. In this
notation, Hx,y denotes the value of the height
map in the xth column and the yth row of the
array.

The vector for each pixel is calculated by
taking the average of four unit vectors pointing
towards adjacent pixels, each weighted by the
difference in height between the neighbouring
pixel and the central pixel, thus:

Txy = ([0 1].U + [1 0].R + [0 -1].D + [-1 0].L) / 4

Where:
U = Hx,y – Hx,y+1,
R = Hx,y - Hx+1,y,
D = Hx,y - Hx,y-1,
L = Hx,y - Hx-1,y

Hence T defines a gradient field over the
paper’s surface. The gradient field is averaged in
order to simplify the calculations.

Paint is modelled as a particle system where
each value has a colour, c, and a wetness value,
w. The wetness value is a model of the fluid
carried by that particle and is used to define that
particle’s interaction with the paper. The paper
itself also has an array of wetness values, W,
corresponding to each pixel.

Particles are added to the simulation by the
user using a virtual brush. Particles are born
with a wetness value and colour value specified
by the user. The particles are also given a
starting velocity, v, which carries them away

from the brush. Once entered into the
simulation, particles are moved across the
paper’s surface by using the texture vector
corresponding to the pixel in which the particle
is currently residing (Tx,y) as an accelerating
force. The particle is then accelerated by a
gravity vector, g, so that paint dripping can be
simulated, and a constant frictional term, f, is
subtracted so that the particles tend to slow
down over time. The velocity of the particles is
then scaled by the wetness of the paper at that
point and the particle’s current position, p,
updated by adding the resulting velocity scaled
by the time step, dt, to ensure consistent results.
The following pseudo code illustrates this
process:

proc updateParticleVelocities(dt)

for all particles (i) do
vi ← vi + Tx,y
vi ← vi + g
vi ← vi – f
vi ← vi * Wx,y
pi ← pi + vi * dt

end for
end proc

The particles colour the paper as they move

over it by taking a proportion of their colour,
scaled by their wetness, and adding it to the
colour value for the paper at that point. This
simulates absorption of the paint by the paper.
They also pick up a portion of the colour from
the paper to simulate pigment being reabsorbed
by the paint fluid.

At the end of each time step the paper and the
paint are dried out to simulate evaporation by
subtracting a constant term from their respective
wetness values.

Wetness is added to the paper over the area of
the user’s brushstroke. By scaling the particles’
velocity by the wetness value of the paper,
effects such as edge-darkening and flow effects
can be produced as the particles tend to move
faster in the wet areas and bunch up in the dry
areas at the edges of a stroke [Fig. 5.1, 5.2,
below]. This is similar to Curtis et al’s wet area
mask.

Granulation also emerges from this system as
particles are directed towards the low areas of
the papers surface by the texture field, just as in
real watercolour. My initial C implementation of
this method can be found on the accompanying
CD.

The most obvious shortcoming of this system
in its present state is the graininess of the image
produced. This is caused by the small size of the

particles and their only affecting one pixel at a
time. It would be relatively simple to “smudge”
the particles’ effect over an area larger than one
pixel, just by averaging the particle’s pigment
deposition over the immediate neighbourhood of
the pixel each time step.

Figure 5.1: Particles migrate from the centre
towards the outside of a stroke where they are
stopped by the edges of the wet area, causing
edge-darkening.

Figure 5.2: In wet areas particles move freely
following the texture field of the paper, creating
flow effects

However there is a more deep-seated problem
with the particle-based approach: it is trying to
model a continuous effect with small, discrete
particles. The method described tries to get
around this by spreading each particle’s effect
over time and space, analogously to paint
depositing a certain amount of pigment on the
paper as it moves over it. The fact is that this is
just too far removed from the way watercolour
works. In real watercolour painting it is more

important where the paint ends up rather than
where it has been.

Additionally, using particles makes interaction
between paint strokes very difficult. While I
have attempted to simulate this by having the
particles pick up colour from the paper as they
move along, the results are poor. What is needed
is some way to have the particles interact with
each other. Whether using local fields, or trying
to model collisions, the result of either would
once again be slow computation and hence loss
of interactivity.

A possible solution would be to use the
particle system as a form of “marker” to build an
implicit surface. This could be executed by
interpolating the colour values between particles
over the paper, or perhaps by implementing a
2D metaball system. Both of these methods
throw up their own algorithmic problems and
both would severely limit the speed at which the
application would run.

6. An Assessment And Comparison Of The
Methods Described So Far

So far I have investigated the methods
described by Small (1991) and Curtis et al
(1997) and I have also described my own
particle-based method for simulating
watercolour painting. I have implemented a
simple painting program based on Small’s
cellular automaton technique as well as a quick
test program for my particle-based method.

The measure of success for all of these
methods has to be how well they replicate the
watercolour effects described in section 2.1. For
a watercolour-painting program it is also of
utmost importance that the simulation runs in
real-time.

So far the results have not been good. The
cellular-automaton-based method excelled in
simulating wet-in-wet painting and produced
edge-darkening as an emergent result. I believe
it could also make a fair approximation of all the
other watercolour effects such as granulation
and dry-brush with the addition of a height-
field-based paper texture similar to that
described in section 5.1.

It became apparent that the cellular-
automaton-based method could not give real-
time interaction at high resolutions (the program
only runs reasonably well on a sixty-cell-square
automaton). I considered this to be such a severe
limitation that it was not worth continuing with
the CA method and I should investigate other
avenues. Curtis et al (1997) address the even
more severe speed limitations in their system by

having the painting and the simulation as two
separate processes: first the user lays down areas
of colour and water, and then runs the
simulation for a set number of time steps to
produce the finished image. The simulation time
reported by Curtis et al for a 640x480 image is
seven hours. For automatically painting a video
frame (one of the applications implemented by
Curtis et al) this may be acceptable if one has
patience, but is hardly interactive.

In an attempt to produce an interactive
painting program I designed the particle-based
system described in section 5. While I have not
had time to implement most of the ideas I
presented, initial results have not been
promising. As stated in the previous section, I
feel that the possible improvements mooted
would all incur a severe speed hit, for
questionable improvement in visual quality.

Essentially the problem as I have found it
comes down to this: one can have a realistic and
visually interesting simulation that is very slow,
or one can have an interactive application that
does not look very much like watercolour! I
believe I failed because I attempted to resolve an
intractable problem. In order to get a realistic
simulation of watercolour, one has to be
prepared to wait for the simulation to execute.

With that in mind I now present one last
possible method for simulating watercolour
painting.

7. Watercolour Fudge
Based on my assessment of existing methods

and my own implementation in the last section, I
have decided that simulating watercolour
effectively and interactively on today’s hardware
is not a realistic proposal. I therefore propose a
method to fake it. While this method does not
attempt to simulate the process of watercolour
painting as an experienced watercolorist would
expect, it provides a framework for effectively
reproducing all the basic effects of watercolour
painting (glazing, wet-in-wet, dry-brush etc) in a
controllable and, most importantly, interactive
manner.

7.1 Blocks of Colour
The proposed framework is based on the

observation that watercolorists work by blocking
in areas of colour (Paramón, 1993; Bolton,
2000). Separate areas of colour may merge and
become one as the painting progresses, but when

they dry, these areas dry individually and so
may be treated as separate units.

My idea is to have a program where the user
lays down areas of colour (blocks) with standard
brush tools. The user then decides how each
block will interact with blocks below it by
choosing a blending mode. This decision is
analogous to the real watercolour artist deciding
how long to leave an area of paint to dry before
painting over it. Here, of course, the virtual
watercolorist is gifted not only with the power of
an undo function, but by having the program
keep the original blocks in memory, the user
may re-order blocks and change the blending
modes at will. This working paradigm also sits
better with the natural painting style of many
artists, who would perceive a painting as being
made up of separate areas of colour representing
say a house or a tree. To an observer of the
finished painting it is the interaction of the areas
of colour that is more important than the
interaction of pigment grains at the microscopic
level.

Having decided that the user will work with
flat areas of colour, it is now important to look
at how the program captures these blocks and
makes them look like watercolour.

As the user draws strokes on the paper, the
painted area could be captured either using a
bitmap mask to define the pixels touched by the
brush, or using vectors to define the area filled
in. Bitmaps are advantageous because they lend
themselves easily to standard image processing
techniques, whereas using vectors would
eliminate aliasing problems and would be
resolution-independent.

Once captured, the block can be stored in
memory in a similar fashion to a layer in
Photoshop. Then the user can decide in what
manner each block should be blended with the
blocks below it. This problem should be
approached by taking each of the basic effects
and techniques described in section 2.1 and
formulating a method to reproduce these effects
using standard image-processing techniques:

A) Wash

A wash could be effected simply by having
the user place multiple strokes of varying
colour to describe the wash (flat, graded,
variegated) and then applying a Gaussian blur
filter with a large kernel to blend the strokes
together into one block of smooth colour

B) Wet-into-wet and back runs
Here the upper block must bleed smoothly

into the lower block. A simple way to do this
would just be to use a Gaussian blur again to
blend the two blocks together. A more

accurate method would be to use a particle
system similar to that described in section 5.1.

Here however the particles should be placed
along the boundary of the top block (this is
trivial to accomplish with a vector-based
block: one could simply re-sample the shape
outline to any desired accuracy) before being
released into a suitable vector field such as
that described in section 5.1, or perhaps one
generated by a Perlin-noise-variant. The
boundary of the block moves with the
particles.

The block must lighten in colour to reflect
the fact that its pigment content is now spread
over a larger area. This can be accomplished
simply by scaling the colour of the entire
block down in proportion to the difference
between its old and new area. To finish the
effect a Gaussian blur could again be applied
to smooth the boundaries between the upper
and lower blocks.

C) Dry brush
Dry brush would have to be implemented at

the time the user made the stroke. This effect
would be very simple to implement: as the
user draws a brushstroke, colour is only
applied to the raised parts of the paper.

D) Edge darkening
Edge darkening can be achieved by

contracting the block slightly, darkening the
area that is the difference between the two and
slightly lightening the area in the middle.

Once these effects have been applied all the

blocks can be combined together to make the
final flat image in the frame buffer. Now the last
stage should be applied:

E) Paper texture and granulation

Paper texture can be applied to all blocks
simultaneously by multiplying the frame
buffer pixel colour value by the value of a
paper texture height field. Thus it would
appear that raised areas had received less
pigment, and pigment had settled into lower
areas. Granulation is simply a repeat of this
process using a paper texture that has been
clamped in order that only the lowest areas of
the paper are darkened. The strength of both
these effects should be dependent on the
colour of the pixel being multiplied, to
simulate the effects caused by different
pigments having different weights.

Here a realistic wash has been created. First a
series of graded brush strokes were smoothed
with Gaussian blur, and then the image was
multiplied with a paper texture image.

Here a single stroke has been treated with two
different effects: dry brush and edge darkening.
Each effect was masked by blurring the stroke
and then using the difference between the
blurred stroke and the original as the mask. The
edge darkening effect was created by
duplicating the stroke, masking the duplicate
with a thin mask and then multiplying it back
over the original. The dry-brush effect was
created by clamping the paper texture to
produce large blotches and then using these
blotches to cut out the bottom part of the stroke.
Again a paper texture has been applied to the
whole image, but in this case a second paper
layer has been multiplied over. This second
layer was clamped and blurred to create small
dark spots simulating granulation in the low
areas of the paper’s surface.

While there has not been time to implement
this method, the two images above were
produced as proof of concept. They were
produced by using Adobe Photoshop to create
the areas of colour, then applying the same

image processing techniques described above to
produce the watercolour effects.

7.2 The Colour Problem
In real watercolour painting, laying the same

pigment over the top of itself will produce a
colour only as dark as the dry pigment, which in
many cases will still be a strong, vibrant colour.

However in subtractive colour mixing on the
computer, the same colour laid onto the same
pixel several times can quickly tend to pure
black.

The problem arises because in the computer’s
colour representation the user is limited to a
palette of three colours determined by the RGB
display palette, or its linear transformation:
CMY.

Curtis et al (1997) solve this problem by
having the user define pigments in terms of the
Kubelka-Munk coefficients K and S. The
pigments are then applied to the paper in
individual glazes.

A more intuitive solution would be to give the
user a virtual paint box, resplendent with a
number of basic pigments. The user can then
mix these pigments on a virtual palette to
produce the desired colour before applying it to
the paper. In order to do this it would be
necessary to subvert the standard RGB display
model and have a number of colour planes that
correspond to the choice of pigment. Obviously,
the number of pigments available to the user
would be limited by the amount of available
memory. Defining a colour in terms of, say nine
different pigments would require three times as
much memory as in the RGB model. This
should not be too much of a problem, as one can
safely assume a graphics user to have at least
512MB of RAM. In cases where RAM is a
limiting factor, it should be sufficient to write a
simple paging system to swap blocks that are not
in use to disk to free up memory.

Each pigment should initially be defined in
the CMY model, as then it is a simple
calculation to combine them back into RGB
space for display on a monitor, or for saving in a
standard image file format.

The main advantage of this colour system is
that it directly corresponds to the way in which
an artist mixes colours using real paints. Unlike
the Kubelka-Munk model, it gives users an
easily-understandable way to mix colours for
painting.

8. Conclusions
I have researched and described the

implementation of three different methods for
simulating watercolour painting. My research
has led me to investigate two existing systems
for simulating watercolour painting, namely
those of Small and Curtis et al as described in
their 1991 and 1997 papers, respectively. I have
covered, in detail, the related topics of fluid
dynamics, cellular automata and Kubelka-Munk
theory, as well as the history and practice of the
medium itself.

The first implementation I made was based on
the method described by David Small (1991)
using a cellular automaton to model diffusion of
paint over a flat surface. I had originally planned
to address the limitations of Small’s system and
extend it to incorporate a model of the paper’s
texture for a better visual result. The initial
visual results were fairly good, despite some
artefacts. The system realistically portrays
painting with a wet medium, although it feels
more like pushing paint around in a palette than
painting on paper.

Despite this initial promise, it was apparent
that using a cellular automaton was far too slow
to create an interactive painting program. The
simulation has to run at a very low resolution to
give real-time interaction. It is possible that with
some more time to look into this it might be
possible to optimize the cellular automaton
calculations. However this optimization would
need to result in a speed increase of nearly one
hundred times to yield real-time interaction at
high resolutions. I considered this to be too tall
an order and decided to look into other methods.

Based on my experience with the cellular
automaton method, and the research I had done
into fluid dynamics, I then tried to approximate
fluid motion using particles. Conversely to my
experience with the cellular automaton, I now
found that I had real-time interaction, but the
visual result was very poor. I hypothesized some
possible solutions, but none seemed likely to
give the visual result I was looking for.

It seemed with these methods of trying to
approximate the actual dynamics of watercolour
I was faced with an either-or situation: I could
either have a pleasing, accurate visual
approximation of watercolour, or I could have
real-time interaction. Not both.

Determined not to be defeated, I took one
final look at the problem from a different angle.
Since trying to simulate or approximate the
physical properties of watercolour had been
unsuccessful, I formulated a new method based
entirely on my own research using watercolour
paints [see accompanying CD2] and my research

into techniques applied by the traditional
watercolorist (Parramón, 1993; Bolton, 2000).

The result is an innovative, practical system. It
employs standard image processing techniques
that are easy to implement and fast to execute. It
also incorporates a proposal for a new way of
representing colour that directly corresponds to
colour mixing and selection in the real world.
While the proposed system does not give the
user a straight simulation of watercolour
painting per se, my motivation for this project
has been to come up with a system that can
produce believable and aesthetically pleasing
results. If I had time to implement this system, I
believe it would do exactly that, and I believe
that the test images on the previous pages
demonstrate that the concept would work
extremely well when implemented.

References

GARDNER, M., 1970, Mathematical Games: The fantastic combinations of John Conway's new
solitaire game "life", Scientific American, 223 (October 1970), 120-123.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K.W., AND SALESIN, D. H, 1997,
Computer-Generated Watercolor, Proceedings of Siggraph ’97, 421-430.

SMALL, D., 1991, Modelling Watercolor by Simulating Diffusion, Pigment and Paper Fibers, Image
Handling and Reproduction Systems Integration, SPIE 1460 (1991), 140-146

WOLFRAM, S., 1983, Cellular Automata, Los Alamos Science, 9 (Fall 1983), 2-21

WOLFRAM, S., 1986, Cellular Automaton Fluids: Basic Theory, Journal of Statistical Physics, 45
(November 1986), 471-526.

STAM, J., 1999, Stable Fluids, Siggraph ’99 Conference Proceedings, 121-128

STAM, J., 2003, Real-Time Fluid Dynamics For Games,

HAASE, C.S. AND MEYER, G.W., 1992, Modeling Pigmented Materials For Realistic Image
Synthesis, ACM Transactions On Graphics, Volume 11, Issue 4, 305-335

ODDY, R.J. AND WILLIS, P.J., 1991, A Physically Based Colour Model, Computer Graphics Forum,
Issue 10, 121-127

BOLTON, R., 2000, Creative Watercolour Techniques, London, Search Press

HARNSON, H., 2000, Watercolours In A Weekend, London, Search Press

MARSDEN, J.E. AND CHORIN, A.J., 1979, A Mathematical Introduction To Fluid Dynamics, 3rd
Edition, New York, Springer-Verlag

PARRAMÓN, J.M., 1993, The Complete Book Of Watercolour, London, Phaidon Press

APPENDIX A – Contents of the accompanying CD-ROMs

CD1

bin
 particleWatercolour.exe
 - Test program for particle method described in section 5.1
 caWatercolour.exe

- Implementation of cellular automaton method described in section 4
 gameOfLife.exe
 - Implementation of Conway’s cellular automaton game, Life
 Dance.exe
 - Implementation of behavioural system from Appendix B
 flowanim.exe
 - Andrew Nealen’s implementation of Jos Stam’s stable fluid solver

docs
- electronic versions of this paper in MS Word and PDF format

source

- Accompanying source code and MS VC.NET project files for the software found in
bin

CD2 – Video Reference

Contains four video files in DivX 5.02 codec (provided on CD1) showing my
experimentation with watercolour paints, and trying to reproduce some of the effects
described in section 2.1.

Dance! – A Nightclub “Battle” Simulation
Before starting work on the watercolour

simulation, I spent some time looking into
behavioural systems and artificial intelligence,
particularly the concept of an “autonomous
agent”.

My idea was to set up a fictitious nightclub
situation in which agents would compete against
each other to see who had the best dance moves.
How each agent faired would affect their
behaviour within the nightclub and towards other
agents.

I started out by looking into what are known as
“steering behaviours”: extensions of the flocking
algorithm devised by Craig W. Reynolds.
Reynolds and others have extended the range of
behaviours to include collision avoidance, seek
and pursuit behaviours, wandering and many
more.

I had planned to implement the dancing agents
as a sort of state machine. The agents’ behaviour
would then be controlled by a weighted
combination of steering behaviours, for example
seek and arrive at the bar to get a drink, avoid
other dancers and walls. The active behaviours
are kept on a list or vector which the state
machine updates to effect the agent’s objective.

I got as far as implementing all of the
applicable steering behaviours, and the active list
for executing them within the update() function
of each dancer, or “boid”, object. I achieved this
using the inheritance and polymorphism features
of C++. Each behaviour is derived from an
abstract Behaviour base class. Each boid then
keeps a list of Behaviour base class pointers and
calls their update() function each time step to get
a steering force due to that behaviour. The
steering forces are combined with a weighted
average to make an acceleration force with
which to alter the boid’s velocity

There was a small problem created due to the
fact that some behaviours require a list of boids
on which to operate. For example the collision
avoidance behaviour needs to know where all the
other boids are in order to calculate a steering
force to avoid them. The collision avoidance
behaviours were incorporated directly into the
boid class, rather than being weighted like the
rest of the behaviours, to ensure that boids would
never intersect each other or go through walls.

Thus the collision-avoidance behaviour objects
have to “know” about the boid objects and vice
versa, creating a declaration problem. The
solution was to inherit the Boid class from an
abstract base class as well, thus allowing the

behaviour objects to store a pointer to this base
class and access data such as the boids’ position
and orientation, while still declaring the actual
Boid class itself after the behaviour classes.

I also began implementation of the virtual DJ.
The idea was that there would be a DJ class that
would mix mp3 music files on-the-fly to
simulate a real nightclub experience. The dancers
would be animated to move in time to the music.
I got as far as having the dancers flash in time to
the music playing. Rather than trying to beat-
match songs at run-time, the approach taken was
to use music-editing software to set the BPM of
each song beforehand, then the problem of
mixing the songs together was reduced to
keeping track of how many beats had passed
using a timer, and changing the volume of each
song appropriately. Animating the dancers in
time to the music can be accomplished easily
since if the program knows the BPM of each
song it is trivial to time the animation to match.

I think I made a very good start on this project.
Although there is no implementation of the state
machine for each agent, the steering behaviours
and animation timing work well. I decided to
change project and investigate watercolour
primarily because I found that my main interest
in the dance simulation was in the music and the
virtual DJ. While this is a fairly challenging area
to develop, it seemed to me to be a little too far
removed from graphics and animation, and I
wanted to tackle a project that aligned more
directly with my current interests in computer
graphics.

