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Abstract 
In this paper I describe the research and 

development for a real-time watercolour 
painting program. I present my research into 
related areas of interest, such as fluid dynamics, 
cellular automata and Kubelka-Munk theory. I 
look closely at two existing systems for 
simulating the properties of watercolour paints, 
and assess their possible applicability to real-
time painting. I go on to develop two programs 
to test my ideas, and provide the design for a 
third that should solve the problems encountered 
with previous implementations. 

1. Introduction 
In recent years, much attention has turned to 

reproducing natural-media effects for digital 
painting. As processing power has advanced, so 
has the complexity and believability of 
algorithms used to create these effects. 

Watercolour is perhaps the hardest natural 
medium to simulate. Oil paints and hard media 
such as pastels and pencil can effectively be 
described in the immediate contact reaction 
between the artist’s tool and the paper’s surface. 
Watercolour painting, on the other hand, 
depends heavily upon the motion of the pigment 
solution applied to the paper. This process 
continues after the artist’s brush has left the 
paper and, depending on the environment, the 
system will continue to evolve for some time 
after the artist has finished painting. It is for this 
reason that simulating watercolour painting 
convincingly presents such a challenge. 

 

1.1 Related Work 
Small (1991) presents a method for simulating 

watercolour effects using a system of cellular 
automata on a Connection Machine. Curtis et al 
(1997) also look at Small’s work and extend 
Small’s system to incorporate the shallow-water 
equations of fluid dynamics and Kubelka-Munk 
theory for a more accurate result. The resulting  

 

images [Fig.1.1] are pleasing to the eye and 
exhibit many of  the features of real watercolour 
paintings. 

 

Figure 1.1 Realistic watercolourisation of a low-
resolution video frame by Curtis’s system.  

 

1.2 Overview 
In the next section I first present my research 

into traditional watercolour techniques, the 
properties of watercolour paints and modelling 
the optical properties of the paint for computer 
display using Kubelka-Munk theory. In section 
3 I then present my research into cellular 
automata and fluid dynamics, and how these 
apply to the simulation of the watercolour 
medium. In section 4 I make a detailed analysis 
of the methods described by Small and Curtis et 
al, and assess their applicability to the problem 
of interactive simulation of watercolour, I also 
describe the implementation of a simple painting 
program in C++ using Small’s method as a 
template. In section 5 I go on to describe my 
first proposed method using particles, and also 
describe the partial implementation of this 
method. In section 6 I make an assessment of the 
work produced so far, before describing the 
possible design of a realistic, interactive 
watercolour painting program in section 7. In 
section 8 I assess my success in carrying out this 
project and draw my conclusions. 



2. Research  
2.1 Traditional watercolour 

Watercolour as a medium has been in use for 
over 30,000 years. Watercolour as we know it 
today first made its successful transition to paper 
(as opposed to walls) in the 15th Century, one of 
the first purveyors being Albrecht Dürer. 

Watercolour is best known in the paintings of 
18th and 19th Century England, made famous by 
such artists as Turner and Constable (Parramón, 
1993). 

 

San Giorgio Maggiroe from the Customs House  by 
J.M.W. Turner 

The Piece of Turf  by Albrecht Dürer 

The paint itself consists of minute pigment 
grains held in suspension in a mixture of water 
and binding agent. The binding agent helps the 
pigment to adhere to the paper’s surface (Curtis 
et al, 1997). 

Curtis et al (1997) state that it is just as 
important to effectively simulate the effects 
watercolour produces as it is to simulate its 
physical properties. 

Bolton (2000) and Harnson (2000) list the 
basic techniques and effects as follows: 

 
• Wash: areas of colour applied to dry 

or wet paper with a well-loaded, 
large brush. A wash can be flat: a 
single colour, graded: one colour 
applied in a smooth blend from dark 
to light, or variegated: a smooth 
blend of two or more colours. 

• Wet-into-wet: paint is applied to a 
damp or wet surface giving a 
“ghostly” effect caused by the 
patterns of the water’s flow. 

• Wet-onto-dry: paint is applied onto 
dry paper or already dry paint. 

• Glazing: when thin layers of colour 
are applied over the top of one 
another, the result is a rich, 
translucent tone. 

• Dry-brush: by blotting the brush to 
remove most of the water and 
drawing over the paper at the right 
angle, colour is deposited only on the 
high points of the paper’s surface 
creating a rough, textural effect. 

• Granulation is caused by the 
pigments settling down into the 
recesses in the paper’s surface. 
Different paints exhibit more or less 
of this effect depending on the 
weight of their pigments.  

 
Curtis et al (1997) also make specific mention 

of edge-darkening. When wet paint is applied 
onto a dry surface, evaporation at the edges of 
the stroke causes the paint to flow outwards, 
causing more pigment to be deposited at the 
edges of the stroke. This is also a characteristic 
feature of watercolour, which a skilled artist 
knows how to control. 

From looking at these effects and their use by 
professional artists in watercolour paintings, one 
can break down watercolour into two separate 
processes: flow and optical composition. Flow 
is governed by the dynamics of the water in 
which the pigment is suspended. The way in 
which the water moves over the paper is 
extremely important for all of the effects listed 
above, and any simulation of watercolour 
painting must either simulate water flow 
accurately, or believably fake its end results. 
Optical composition is the description of how 
the pigments in the paint are combined whether 
by mixing or glazing, and how light reflects off 
them to produce the image in the viewer’s eye. 
In the next section I investigate Kubelka-Munk 
theory as a method to accurately describe the 



optical properties of pigmented materials such as 
paints. I then go on to investigate fluid dynamics 
and assess its suitability for describing flow 
effects in a watercolour painting application. 
 

2.2 Kubelka-Munk Theory 
The colour model with which computer 

graphics artists are most familiar is the additive 
RGB triplet model, corresponding to the red, 
green and blue electron guns found in a common 
television set or computer monitor. This model 
is in direct contrast to the way in which media 
such as watercolour, which is nearly transparent, 
affect light passing through them. Filtering 
media are subtractive. That is to say that 
combining a red filter, a blue filter and a green 
filter will produce black. In contrast, combining 
red, green and blue in the additive model will 
produce white.  

Subtractive colour can be calculated simply by 
using the CMY triplet model, which is a linear 
transformation of the RGB colour space using 
the formula: 

 
CCMY = [1 1 1] - CRGB 

The results of any colour model used in a 
paint application must be transformed back to 
RGB space for projection on a monitor, so using 
the CMY model is very attractive for computer 
graphics applications because of its simplicity. 

However, subtractive colour mixing assumes 
that the material in question is transparent 
enough that light can pass straight through. For 
thin washes of watercolour paints, one can often 
assume that this is the case (Haase and Meyer, 
1991), but it will not always be so. This is 
because suspended particles of pigment will 
reflect and scatter incoming light in an 
unpredictable way [see Fig. 2.1 below]. 

 

Figure 2.1 (Haase and Meyer, 1991): Pigment 
particles in the paint medium obstruct and scatter 
back incoming light, making a simple reflectance 
model inadequate. 

Kubelka-Munk theory (KM theory) describes 
the scattering of light from pigmented materials. 
It provides equations to calculate the overall 
reflected colour of a particular pigment for 
which two reflectance coefficients, K and S, are 
known. Haase and Meyer (1991) define the 
reflectance equation as: 

 

This result is a spectral curve in CIE XYZ 
colour space, which can then be converted to 
RGB for display on a monitor (Haase and 
Meyer, 1991). 

It is not terribly intuitive for an artist to have 
to specify colours using K and S values. A 
preferential method would be to have the artist 
specify a desired colour and have the computer 
calculate the appropriate coefficients for them. 
Haase and Meyer (1991) achieve this using a 
standard colour picker and an iterative least-
squares method to select the closest matching K
and S values. Curtis et al (1997) take an 
alternative and more complex approach, asking 
the user of their application to define what their 
colour should look like over white and black 
swatches. This is fine if one has the desired 
pigments handy for reference, but again is 
unintuitive for the computer artist. 

KM theory provides an accurate model for 
simulating pigmented materials such as paint. 
Indeed, Curtis et al report accurate results in 
their painting system. However, for the specific 
problem of watercolour, KM calculations may 
be wasteful. Haase and Meyer suggest that 
watercolour may be accurately simulated using 
the simple subtractive CMY model, but this 
introduces its own problems. I address the 
limitations of this colour model and formulate 
my own colour model for watercolour painting 
in section 7.2. 

 

3. Fluid Dynamics 
I present here a very brief overview of a 

mathematical model of fluid motion, specifically 
the Navier-Stokes equations for incompressible 
flow in order to familiarise the reader with the 
problem. 

The motion of a fluid depends on the 
interaction between microscopic fluid particles. 
These discrete events give rise to apparently 



continuous macroscopic behaviour. To put it 
another way, the collisions between the 
microscopic fluid particles look like smooth, 
rolling fluid motion when viewed at a large 
enough scale. It is this assumption that allows 
the derivation of a mathematical model for 
describing fluid motion. 

The Navier-Stokes equations for 
incompressible flow look like this (Marsden and 
Chorin, 1979): 

 

Where p is the pressure of the fluid, ρ = ρ0 is 
the mass of the fluid and is constant (the 
principle of conservation of mass is necessary to 
derive these equations), and u is the velocity of 
the fluid.  

Stam (1999) presents an alternative, compact 
vector notation for the Navier-Stokes equations 
(only slightly more comprehensibly) as: 

 

Where u is the velocity of the fluid, ρ the 
density, v the coefficient of kinematic viscosity 
and f is an external force that in most cases will 
be zero. Both forms of the equations also 
enforce the boundary condition, u=0 at the edges 
of the simulation volume. What this means is 
that the simulation must be entirely enclosed and 
fluid may not “leak out”. Alternatively, the 
simulation may be wrapped around so that fluid 
leaving one side of the bounding volume re-
appears on the other. 

What these equations each say is that provided 
one knows the initial values for the velocity and 
the pressure, the state of the fluid can be evolved 
linearly over time (Stam, 1999), to put it another 
way, the motion of a given fluid can be 
calculated by stepping forwards through time 
and applying the Navier-Stokes equations each 
time step. The “look” of the fluid depends 
entirely on its viscosity. For a watercolour 
simulation, the density value can be interpreted 
as the amount of pigment in the fluid at that 
point. 

The main problems in simulating fluid motion 
on a computer arise because the equations of 
motion must be chopped up into discrete steps of 
space and time in order to be simulated. Too 
large a time step and the simulation may “blow 
up”; too large a space step and the simulation 
will not yield accurate results. For engineering 
purposes it is necessary that extremely accurate 
results be obtained. For computer visualisation 
applications however, accuracy can be sacrificed 
for speed and stability as long as the results look 
like fluid motion to the casual observer (Stam, 
1999). 

In his 1999 paper, “Stable Fluids”, Jos Stam 
presents just such a system [see accompanying 
CD-ROM for Andrew Nealen’s 2D FFT 
implementation of Stam’s method]. The fluid 
volume is described by a grid of fluid cells, or 
“voxels”. Each voxel contains a known density 
and velocity value. Each time step, the solver 
updates the density and velocity values of each 
voxel in accordance with the Navier-Stokes 
equations. 

The general Navier-Stokes equations are 
reduced to separate numerical methods covering 
each of the effects of viscosity, convection and 
velocity within the fluid to give a fast result.  
Stam ensures stability within the solver by back-
tracing, essentially asking the question each time 
step, “Which of these possible results can be 
mapped back onto my initial data”. The result is 
a fast, stable solver capable of producing very 
realistic, fluid-like motions. 
 

4. Cellular Automata 
Cellular automata (CA) are simple 

mathematical idealisations of complex systems. 
They consist of a lattice of discrete, identical 
sites (cells) holding arbitrary values. These 
values develop over discrete time steps, 
governed by rules determining each cell’s 
interaction with its neighbours. (Wolfram, 
1983). The idea is that given simple, 
microscopic rules, the cellular automata will 
produce complex, macroscopic behaviour over 
time. 

A good basic example of cellular automata at 
work is Steven Conway’s game, “Life”. Conway 
uses a cellular automaton to produce behaviours 
analogous to the growth of bacteria. 

In this model, each cell can either be alive or 
dead, represented as a binary 0 or 1. Each time-
step, a cell’s state is modified depending on the 
state of its neighbours. Gardner (1970) lists the 
rules as follows: 



1. Survivals. Every cell with two or three 
neighbouring living cells survives for 
the next generation.  

2. Deaths. Each cell with four or more 
living neighbours dies from 
overpopulation. Every cell with one 
living neighbour or none dies from 
isolation.  

3. Births. Each empty cell adjacent to 
exactly three neighbours—no more, no 
fewer—is a birth cell. It becomes alive 
on the next time step.  

Given these three rules, Life produces 
complex, self-organizing, repeating and even 
self-replicating “organisms” [see the 
accompanying CD-ROM for my own C++ 
implementation of Life), as well as a guide to 
some of the more interesting patterns].  

 

4.2 A Cellular Automaton Model For 
Watercolour 

In his 1990 paper, “Modelling Watercolor by 
Simulating Diffusion, Pigment and Paper 
Fibers”, David Small approaches the problem by 
approximating only those properties of fluid 
motion that are important for the look of 
watercolour paint, and ignoring the rest. He 
assumes that simulating the rolling, turbulent 
motion of the fluid is not necessary for painting 
applications.  

Small’s set-up consists of a two-layered, 
rectangular cellular automaton. Each cell holds 
values denoting the amount of paint present in 
that cell, represented as a quantity of fluid and a 
quantity of pigment. Each cell also holds values 
for the amount of pigment and fluid that has 
been absorbed into the paper at that cell. The 
motion of paint on top of the paper, “Surface 
effects”, and the motion of the paint within the 
paper “Substrate effects” are dealt with 
separately, and paint can move from the surface 
layer into the substrate layer.  

The user adds fluid and pigment interactively 
at the start of the simulation and then watches 
the results evolve over time. 

The movement of paint in the surface layer is 
defined by a displacement force, D, which is 
calculated for each cell in both the horizontal 
and vertical directions and consists of the forces 
of surface tension and “spreading” (diffusion). 
Essentially this means that water in a particular 
cell is pulled toward water over a 10-cell region, 
and also tries to balance the level of water in its 
direct neighbours. In the surface layer pigment 
moves along with the water in equal proportion 
to it. 

Each time step, a new surface fluid value is 
calculated for each cell by first subtracting from 
the last step’s value the fluid moving out of the 
cell due to the displacement force, D, and then 
adding on the fluid moving into the cell from its 
neighbours due to their displacement forces. 
Small constructs similar equations for the fluid 
and pigment moving in the substrate layer, and 
the absorption of pigment from the surface layer 
into the substrate layer; he also takes account of 
evaporation by simply removing a small 
quantity of fluid from each cell each step. 

I implemented the techniques outlined by 
Small in a simple watercolour-painting program, 
with a view to improving the system to handle 
more effects. The simple image below [Fig. 3.2] 
shows an example of what can be produced.  
 

Figure 3.2 An image produced using the cellular 
automaton watercolour system. While mimicking 
some of the features of watercolour painting, the 
system suffers from visual artefacts, as well as being 
hard to control. 

 
The cellular automaton technique can 

accurately describe wet-in-wet painting. 
Unfortunately it gives undesirable visual 
artefacts (the grids of darker spots seen in the 
image above). These are caused by the fact that 
paint only ever moves horizontally or vertically 
in the simulation, and so the paint tends to group 
in dark grid patterns due to surface spreading. It 
is possible to reduce the strength of these 
artefacts by adjusting the surface tension and 
spreading parameters, but this causes the 
simulation to behave in unexpected  ways. 

Small’s method is also limited to simulating 
wet-in-wet painting. The paint spreads over all 
cells in the simulation, as if one were adding 
paint to an already-wet surface. This makes it 
unsuitable for wet-on-dry painting and dry brush 
techniques. 



However the biggest limitation of Small’s 
method is its speed. In order to get it to run 
interactively, the simulation’s cellular 
automaton had to be reduced in size to 60 cells 
square. In a 600 pixel square window, this 
means each cell is represented onscreen by 100 
pixels. To produce detailed and believable 
watercolour painting, one pixel would need to be 
mapped to one cell at most, and preferably four 
to allow multi-sampled anti-aliasing. Rewriting 
to take advantage of multi-processor 
architectures could increase the processing 
speed of the automaton, but this is a special case 
and probably would not give the necessary 
speed boost anyway. 

There are several ways in which the look of 
the simulation could easily be improved.  For 
instance, a height field could be used to simulate 
the motion of the paint over the texture of the 
paper, simply by adding in an extra force to the 
displacement calculation. The grid-like visual 
artefacts apparent in the picture above could be 
removed by using a hexagonal cellular 
automaton similar to that described by Wolfram 
in his 1986 paper “Cellular Automaton Fluids: 
Basic Theory”. However, this would further 
complicate the simulation, adding extra 
calculations for each time step, and for mapping 
the hexagonal grid back onto a rectangular 
display. 

I now look at another technique, based on 
Small’s, which includes a more physically-
accurate fluid model and pigment model to 
produce a better visual result. 

 

4.3 A More Accurate Model 
In their 1997 paper, “Computer Generated 

Watercolour”, Curtis et al describe another 
cellular–automaton-based model building on 
Small’s approximation to include more realistic 
fluid and pigment simulation. As in Small’s 
model, Curtis et al’s model uses three layers of 
simulation, which they define as the shallow-
water layer, the pigment-deposition layer, and 
the capillary layer [Fig 3.3, below]. 

An important addition Curtis et al make to 
Small’s model is that of a height field to 
simulate the texture of the paper, which is 
generated by standard pseudo-random noise 
functions. The height field is used to define a 
gradient field that affects the motion of the 
shallow-water layer. 

 

Figure 3.3 (Curtis et al, 1997) Curtis breaks the 
watercolour simulation down into three discrete 
“layers” or processes. 

The shallow-water layer is an extension of 
Small’s surface layer and is controlled by a fluid 
dynamics system to move the water, and hence 
the pigment suspended in it, around the paper. 
As described in section 2, a fluid simulation 
must enforce appropriate boundary conditions: 
in this case no fluid must move across the 
boundary of the simulation. Curtis et al achieve 
this by using a wet-area mask. This is simply a 
field of Boolean values defining whether or not 
the paper is wet at that point and is itself defined 
by the user’s brushstrokes. Curtis et al simply 
set the velocity of water in any cell not inside 
the wet-area mask to zero. In a similar way to 
the method suggested by Small, Curtis et al 
move the pigment in the shallow water layer 
across cell boundaries in proportion to the water 
flow. Edge darkening is achieved by reducing 
water pressure at the boundary of the wet-area 
mask, causing water and pigment from the 
inside of the wet area to flow to the outside, thus 
producing darker edges. 

The pigment-deposition layer controls 
pigment adsorption and “desorption”: the 
movement of pigment from the water into the 
paper, and the movement of pigment from the 
paper back into the paint suspension. Curtis et al 
again use a more complex simulation of this 
process to achieve more believable results 
modelling the “staining power” and “density” of 
each pigment as well as using the height of the 
paper to scale the amount of pigment transferred 
(Curtis et al, 1997). 

The capillary layer controls the movement of 
water within the paper itself and is analogous to 
Small’s substrate layer. In Curtis et al’s model it 
is only used to simulate back runs. Curtis et al 
use a very similar model to Small’s for this 
layer. 

 



5. Tackling The Problem Of Real-Time 
Interaction 

As has been stated in the previous section, the 
biggest limitation of both Small’s and Curtis et 
al’s methods are the speed of simulation. While 
Curtis et al achieve very realistic and 
aesthetically pleasing images, his simulation—
running at seven hours for a 640x480 image—is 
far too slow for an interactive application. Curtis 
et al allow the user to place the colour and water 
on the paper first, before running the simulation 
to produce the final image, but this seems 
unintuitive: artists rely on seeing the properties 
of watercolour evolve before their eyes as they 
place brushstrokes. 

Clearly a strict physical simulation cannot 
produce acceptable results in real-time at today’s 
processor speeds. It would seem that the biggest 
single speed limitation is caused by the fact that 
each cell of the cellular automaton must be 
visited each time step. This is especially 
apparent in my implementation based on Small’s 
method. When the size of the CA is increased to 
say 600 cells square the frame rate plummets to 
about 10fps, just for drawing the canvas with no 
simulation. This is because the program must 
visit each of the 360,000 cells, convert their 
CMY-colour values to RGB and then draw a 
square at that point. Forcing each cell to be one 
pixel in size and then copying the colour values 
into a pixel array ready to be drawn to the frame 
buffer could gain a small speed improvement. It 
is important to realise however that it is the 
simple act of visiting each cell of the CA and 
performing some calculation there—no matter 
how simple—that is the limiting factor. 

Therefore the most obvious way to improve 
the speed of the application would be to not visit 
every cell. One way to do this would be to keep 
a list of “dirty” cells and then each time step 
only those cells that need to be changed could be 
visited. However, in a painting application the 
whole canvas would quickly become “dirty” and 
so the speed improvement gained is quickly lost 
after a few brushstrokes. 

It therefore becomes apparent that a 
completely different methodology is needed, the 
most obvious being a particle system. Particle 
systems have been successfully used to model a 
huge variety of natural phenomena such as fire, 
smoke and water.  

What is important to the problem of 
watercolour simulation is that particle systems 
can easily be made to follow arbitrary vector 
fields, such as the gradient field describing a 
paper texture; they are easily understandable 
models of dynamic phenomena; and they are 
very fast to calculate given some common-sense 
optimisations. 

I now describe my own proposed model for 
watercolour simulation using particle systems. 
 

5.1 Modelling Watercolour Painting Using 
Particles 

Particle systems cannot directly model fluid 
motion. Fluid dynamics calculations depend on 
the assumption that flow is continuous (Marsden 
and Chorin, 1979) and particles are, by their 
very nature, discrete. 

In this case however, it is not necessary to 
have even a moderately accurate simulation as 
long as the result looks pleasing to the casual 
observer. In fact it is perfectly adequate to have 
the particles’ motion defined by a static vector 
field representing the texture of the paper, as this 
is the most important effect on the fluid’s 
movement. 

In the proposed model the paper texture is 
represented by an array of vectors, T, laid over 
the top of the image buffer, I. The vector, Tx,y,
for each pixel, Ix,y, is calculated from a height 
map, H, representing the paper’s surface. In this 
notation, Hx,y denotes the value of the height 
map in the xth column and the yth row of the 
array. 

The vector for each pixel is calculated by 
taking the average of four unit vectors pointing 
towards adjacent pixels, each weighted by the 
difference in height between the neighbouring 
pixel and the central pixel, thus: 

 
Txy = ([0 1].U + [1 0].R + [0 -1].D + [-1 0].L ) / 4

Where: 
U = Hx,y – Hx,y+1,
R = Hx,y - Hx+1,y,
D = Hx,y - Hx,y-1,
L = Hx,y - Hx-1,y 

Hence T defines a gradient field over the 
paper’s surface. The gradient field is averaged in 
order to simplify the calculations. 

Paint is modelled as a particle system where 
each value has a colour, c, and a wetness value, 
w. The wetness value is a model of the fluid 
carried by that particle and is used to define that 
particle’s interaction with the paper. The paper 
itself also has an array of wetness values, W,
corresponding to each pixel. 

Particles are added to the simulation by the 
user using a virtual brush. Particles are born 
with a wetness value and colour value specified 
by the user. The particles are also given a 
starting velocity, v, which carries them away 



from the brush. Once entered into the 
simulation, particles are moved across the 
paper’s surface by using the texture vector 
corresponding to the pixel in which the particle 
is currently residing (Tx,y) as an accelerating 
force. The particle is then accelerated by a 
gravity vector, g, so that paint dripping can be 
simulated, and a constant frictional term, f, is 
subtracted so that the particles tend to slow 
down over time. The velocity of the particles is 
then scaled by the wetness of the paper at that 
point and the particle’s current position, p,
updated by adding the resulting velocity scaled 
by the time step, dt, to ensure consistent results. 
The following pseudo code illustrates this 
process: 

 
proc updateParticleVelocities(dt)

for all particles (i) do 
vi ← vi + Tx,y 
vi ← vi + g
vi ← vi – f
vi ← vi * Wx,y 
pi ← pi + vi * dt

end for 
end proc 
 
The particles colour the paper as they move 

over it by taking a proportion of their colour, 
scaled by their wetness, and adding it to the 
colour value for the paper at that point. This 
simulates absorption of the paint by the paper. 
They also pick up a portion of the colour from 
the paper to simulate pigment being reabsorbed 
by the paint fluid. 

At the end of each time step the paper and the 
paint are dried out to simulate evaporation by 
subtracting a constant term from their respective 
wetness values.  

Wetness is added to the paper over the area of 
the user’s brushstroke. By scaling the particles’ 
velocity by the wetness value of the paper, 
effects such as edge-darkening and flow effects 
can be produced as the particles tend to move 
faster in the wet areas and bunch up in the dry 
areas at the edges of a stroke [Fig. 5.1, 5.2, 
below]. This is similar to Curtis et al’s wet area 
mask. 

Granulation also emerges from this system as 
particles are directed towards the low areas of 
the papers surface by the texture field, just as in 
real watercolour. My initial C implementation of 
this method can be found on the accompanying 
CD. 

The most obvious shortcoming of this system 
in its present state is the graininess of the image 
produced. This is caused by the small size of the 

particles and their only affecting one pixel at a 
time. It would be relatively simple to “smudge” 
the particles’ effect over an area larger than one 
pixel, just by averaging the particle’s pigment 
deposition over the immediate neighbourhood of 
the pixel each time step. 

 

Figure 5.1: Particles migrate from the centre 
towards the outside of a stroke where they are 
stopped by the edges of the wet area, causing 
edge-darkening. 

Figure 5.2: In wet areas particles move freely 
following the texture field of the paper, creating 
flow effects 

However there is a more deep-seated problem 
with the particle-based approach: it is trying to 
model a continuous effect with small, discrete 
particles. The method described tries to get 
around this by spreading each particle’s effect 
over time and space, analogously to paint 
depositing a certain amount of pigment on the 
paper as it moves over it. The fact is that this is 
just too far removed from the way watercolour 
works. In real watercolour painting it is more 



important where the paint ends up rather than 
where it has been. 

Additionally, using particles makes interaction 
between paint strokes very difficult. While I 
have attempted to simulate this by having the 
particles pick up colour from the paper as they 
move along, the results are poor. What is needed 
is some way to have the particles interact with 
each other. Whether using local fields, or trying 
to model collisions, the result of either would 
once again be slow computation and hence loss 
of interactivity. 

A possible solution would be to use the 
particle system as a form of “marker” to build an 
implicit surface. This could be executed by 
interpolating the colour values between particles 
over the paper, or perhaps by implementing a 
2D metaball system. Both of these methods 
throw up their own algorithmic problems and 
both would severely limit the speed at which the 
application would run.  

 

6. An Assessment And Comparison Of The 
Methods Described So Far 

So far I have investigated the methods 
described by Small (1991) and Curtis et al 
(1997) and I have also described my own 
particle-based method for simulating 
watercolour painting. I have implemented a 
simple painting program based on Small’s 
cellular automaton technique as well as a quick 
test program for my particle-based method. 

The measure of success for all of these 
methods has to be how well they replicate the 
watercolour effects described in section 2.1. For 
a watercolour-painting program it is also of 
utmost importance that the simulation runs in 
real-time. 

So far the results have not been good. The 
cellular-automaton-based method excelled in 
simulating wet-in-wet painting and produced 
edge-darkening as an emergent result. I believe 
it could also make a fair approximation of all the 
other watercolour effects such as granulation 
and dry-brush with the addition of a height-
field-based paper texture similar to that 
described in section 5.1.  

It became apparent that the cellular-
automaton-based method could not give real-
time interaction at high resolutions (the program 
only runs reasonably well on a sixty-cell-square 
automaton). I considered this to be such a severe 
limitation that it was not worth continuing with 
the CA method and I should investigate other 
avenues. Curtis et al (1997) address the even 
more severe speed limitations in their system by 

having the painting and the simulation as two 
separate processes: first the user lays down areas 
of colour and water, and then runs the 
simulation for a set number of time steps to 
produce the finished image. The simulation time 
reported by Curtis et al for a 640x480 image is 
seven hours. For automatically painting a video 
frame (one of the applications implemented by 
Curtis et al) this may be acceptable if one has 
patience, but is hardly interactive. 

In an attempt to produce an interactive 
painting program I designed the particle-based 
system described in section 5. While I have not 
had time to implement most of the ideas I 
presented, initial results have not been 
promising. As stated in the previous section, I 
feel that the possible improvements mooted 
would all incur a severe speed hit, for 
questionable improvement in visual quality. 

Essentially the problem as I have found it 
comes down to this: one can have a realistic and 
visually interesting simulation that is very slow, 
or one can have an interactive application that 
does not look very much like watercolour! I 
believe I failed because I attempted to resolve an 
intractable problem. In order to get a realistic 
simulation of watercolour, one has to be 
prepared to wait for the simulation to execute. 

With that in mind I now present one last 
possible method for simulating watercolour 
painting. 

 

7. Watercolour Fudge 
Based on my assessment of existing methods 

and my own implementation in the last section, I 
have decided that simulating watercolour 
effectively and interactively on today’s hardware 
is not a realistic proposal. I therefore propose a 
method to fake it. While this method does not 
attempt to simulate the process of watercolour 
painting as an experienced watercolorist would 
expect, it provides a framework for effectively 
reproducing all the basic effects of watercolour 
painting (glazing, wet-in-wet, dry-brush etc) in a 
controllable and, most importantly, interactive 
manner. 

 

7.1 Blocks of Colour 
The proposed framework is based on the 

observation that watercolorists work by blocking 
in areas of colour (Paramón, 1993; Bolton, 
2000). Separate areas of colour may merge and 
become one as the painting progresses, but when 



they dry, these areas dry individually and so 
may be treated as separate units. 

My idea is to have a program where the user 
lays down areas of colour (blocks) with standard 
brush tools. The user then decides how each 
block will interact with blocks below it by 
choosing a blending mode. This decision is 
analogous to the real watercolour artist deciding 
how long to leave an area of paint to dry before 
painting over it. Here, of course, the virtual 
watercolorist is gifted not only with the power of 
an undo function, but by having the program 
keep the original blocks in memory, the user 
may re-order blocks and change the blending 
modes at will. This working paradigm also sits 
better with the natural painting style of many 
artists, who would perceive a painting as being 
made up of separate areas of colour representing 
say a house or a tree. To an observer of the 
finished painting it is the interaction of the areas 
of colour that is more important than the 
interaction of pigment grains at the microscopic 
level. 

Having decided that the user will work with 
flat areas of colour, it is now important to look 
at how the program captures these blocks and 
makes them look like watercolour.  

As the user draws strokes on the paper, the 
painted area could be captured either using a 
bitmap mask to define the pixels touched by the 
brush, or using vectors to define the area filled 
in. Bitmaps are advantageous because they lend 
themselves easily to standard image processing 
techniques, whereas using vectors would 
eliminate aliasing problems and would be 
resolution-independent. 

Once captured, the block can be stored in 
memory in a similar fashion to a layer in 
Photoshop. Then the user can decide in what 
manner each block should be blended with the 
blocks below it. This problem should be 
approached by taking each of the basic effects 
and techniques described in section 2.1 and 
formulating a method to reproduce these effects 
using standard image-processing techniques: 
 
A) Wash 

A wash could be effected simply by having 
the user place multiple strokes of varying 
colour to describe the wash (flat, graded, 
variegated) and then applying a Gaussian blur 
filter with a large kernel to blend the strokes 
together into one block of smooth colour 

B) Wet-into-wet and back runs 
Here the upper block must bleed smoothly 

into the lower block. A simple way to do this 
would just be to use a Gaussian blur again to 
blend the two blocks together. A more 

accurate method would be to use a particle 
system similar to that described in section 5.1.  

Here however the particles should be placed 
along the boundary of the top block (this is 
trivial to accomplish with a vector-based 
block: one could simply re-sample the shape 
outline to any desired accuracy) before being 
released into a suitable vector field such as 
that described in section 5.1, or perhaps one 
generated by a Perlin-noise-variant. The 
boundary of the block moves with the 
particles.  

The block must lighten in colour to reflect 
the fact that its pigment content is now spread 
over a larger area. This can be accomplished 
simply by scaling the colour of the entire 
block down in proportion to the difference 
between its old and new area. To finish the 
effect a Gaussian blur could again be applied 
to smooth the boundaries between the upper 
and lower blocks. 

C) Dry brush 
Dry brush would have to be implemented at 

the time the user made the stroke. This effect 
would be very simple to implement: as the 
user draws a brushstroke, colour is only 
applied to the raised parts of the paper. 

D) Edge darkening 
Edge darkening can be achieved by 

contracting the block slightly, darkening the 
area that is the difference between the two and 
slightly lightening the area in the middle. 

 
Once these effects have been applied all the 

blocks can be combined together to make the 
final flat image in the frame buffer. Now the last 
stage should be applied: 
 
E) Paper texture and granulation 

Paper texture can be applied to all blocks 
simultaneously by multiplying the frame 
buffer pixel colour value by the value of a 
paper texture height field. Thus it would 
appear that raised areas had received less 
pigment, and pigment had settled into lower 
areas. Granulation is simply a repeat of this 
process using a paper texture that has been 
clamped in order that only the lowest areas of 
the paper are darkened. The strength of both 
these effects should be dependent on the 
colour of the pixel being multiplied, to 
simulate the effects caused by different 
pigments having different weights. 

 



Here a realistic wash has been created. First a 
series of graded brush strokes were smoothed 
with Gaussian blur, and then the image was 
multiplied with a paper texture image. 

Here a single stroke has been treated with two 
different effects: dry brush and edge darkening. 
Each effect was masked by blurring the stroke 
and then using the difference between the 
blurred stroke and the original as the mask. The 
edge darkening effect was created by 
duplicating the stroke, masking the duplicate 
with a thin mask and then multiplying it back 
over the original. The dry-brush effect was 
created by clamping the paper texture to 
produce large blotches and then using these 
blotches to cut out the bottom part of the stroke. 
Again a paper texture has been applied to the 
whole image, but in this case a second paper 
layer has been multiplied over. This second 
layer was clamped and blurred to create small 
dark spots simulating granulation in the low 
areas of the paper’s surface. 
 

While there has not been time to implement 
this method, the two images above were 
produced as proof of concept. They were 
produced by using Adobe Photoshop to create 
the areas of colour, then applying the same 

image processing techniques described above to 
produce the watercolour effects. 
 

7.2 The Colour Problem 
In real watercolour painting, laying the same 

pigment over the top of itself will produce a 
colour only as dark as the dry pigment, which in 
many cases will still be a strong, vibrant colour. 

However in subtractive colour mixing on the 
computer, the same colour laid onto the same 
pixel several times can quickly tend to pure 
black.  

The problem arises because in the computer’s 
colour representation the user is limited to a 
palette of three colours determined by the RGB 
display palette, or its linear transformation: 
CMY. 

Curtis et al (1997) solve this problem by 
having the user define pigments in terms of the 
Kubelka-Munk coefficients K and S. The 
pigments are then applied to the paper in 
individual glazes. 

A more intuitive solution would be to give the 
user a virtual paint box, resplendent with a 
number of basic pigments. The user can then 
mix these pigments on a virtual palette to 
produce the desired colour before applying it to 
the paper. In order to do this it would be 
necessary to subvert the standard RGB display 
model and have a number of colour planes that 
correspond to the choice of pigment. Obviously, 
the number of pigments available to the user 
would be limited by the amount of available 
memory. Defining a colour in terms of, say nine 
different pigments would require three times as 
much memory as in the RGB model. This 
should not be too much of a problem, as one can 
safely assume a graphics user to have at least 
512MB of RAM. In cases where RAM is a 
limiting factor, it should be sufficient to write a 
simple paging system to swap blocks that are not 
in use to disk to free up memory. 

Each pigment should initially be defined in 
the CMY model, as then it is a simple 
calculation to combine them back into RGB 
space for display on a monitor, or for saving in a 
standard image file format.  

The main advantage of this colour system is 
that it directly corresponds to the way in which 
an artist mixes colours using real paints. Unlike 
the Kubelka-Munk model, it gives users an 
easily-understandable way to mix colours for 
painting. 



8. Conclusions 
I have researched and described the 

implementation of three different methods for 
simulating watercolour painting. My research 
has led me to investigate two existing systems 
for simulating watercolour painting, namely 
those of Small and Curtis et al as described in 
their 1991 and 1997 papers, respectively. I have 
covered, in detail, the related topics of fluid 
dynamics, cellular automata and Kubelka-Munk 
theory, as well as the history and practice of the 
medium itself. 

The first implementation I made was based on 
the method described by David Small (1991) 
using a cellular automaton to model diffusion of 
paint over a flat surface. I had originally planned 
to address the limitations of Small’s system and 
extend it to incorporate a model of the paper’s 
texture for a better visual result. The initial 
visual results were fairly good, despite some 
artefacts. The system realistically portrays 
painting with a wet medium, although it feels 
more like pushing paint around in a palette than 
painting on paper. 

Despite this initial promise, it was apparent 
that using a cellular automaton was far too slow 
to create an interactive painting program. The 
simulation has to run at a very low resolution to 
give real-time interaction. It is possible that with 
some more time to look into this it might be 
possible to optimize the cellular automaton 
calculations. However this optimization would 
need to result in a speed increase of nearly one 
hundred times to yield real-time interaction at 
high resolutions. I considered this to be too tall 
an order and decided to look into other methods. 

Based on my experience with the cellular 
automaton method, and the research I had done 
into fluid dynamics, I then tried to approximate 
fluid motion using particles. Conversely to my 
experience with the cellular automaton, I now 
found that I had real-time interaction, but the 
visual result was very poor. I hypothesized some 
possible solutions, but none seemed likely to 
give the visual result I was looking for. 

It seemed with these methods of trying to 
approximate the actual dynamics of watercolour 
I was faced with an either-or situation: I could 
either have a pleasing, accurate visual 
approximation of watercolour, or I could have 
real-time interaction. Not both. 

Determined not to be defeated, I took one 
final look at the problem from a different angle. 
Since trying to simulate or approximate the 
physical properties of watercolour had been 
unsuccessful, I formulated a new method based 
entirely on my own research using watercolour 
paints [see accompanying CD2] and my research 

into techniques applied by the traditional 
watercolorist (Parramón, 1993; Bolton, 2000). 

The result is an innovative, practical system. It 
employs standard image processing techniques 
that are easy to implement and fast to execute. It 
also incorporates a proposal for a new way of 
representing colour that directly corresponds to 
colour mixing and selection in the real world. 
While the proposed system does not give the 
user a straight simulation of watercolour 
painting per se, my motivation for this project 
has been to come up with a system that can 
produce believable and aesthetically pleasing 
results. If I had time to implement this system, I 
believe it would do exactly that, and I believe 
that the test images on the previous pages 
demonstrate that the concept would work 
extremely well when implemented. 
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APPENDIX A – Contents of the accompanying CD-ROMs 
 

CD1 

bin 
 particleWatercolour.exe 
 - Test program for particle method described in section 5.1 
 caWatercolour.exe 

- Implementation of cellular automaton method described in section 4 
 gameOfLife.exe 
 - Implementation of Conway’s cellular automaton game, Life 
 Dance.exe 
 - Implementation of behavioural system from Appendix B 
 flowanim.exe 
 - Andrew Nealen’s implementation of Jos Stam’s stable fluid solver 
 

docs 
- electronic versions of this paper in MS Word and PDF format 

 
source 

- Accompanying source code and MS VC.NET project files for the software found in 
bin 

CD2 – Video Reference

Contains four video files in DivX 5.02 codec (provided on CD1)  showing my 
experimentation with watercolour paints, and trying to reproduce some of the effects 
described in section 2.1.



Dance! – A Nightclub “Battle” Simulation 
Before starting work on the watercolour 

simulation, I spent some time looking into 
behavioural systems and artificial intelligence, 
particularly the concept of an “autonomous 
agent”. 

My idea was to set up a fictitious nightclub 
situation in which agents would compete against 
each other to see who had the best dance moves. 
How each agent faired would affect their 
behaviour within the nightclub and towards other 
agents. 

I started out by looking into what are known as 
“steering behaviours”: extensions of the flocking 
algorithm devised by Craig W. Reynolds. 
Reynolds and others have extended the range of 
behaviours to include collision avoidance, seek 
and pursuit behaviours, wandering and many 
more. 

I had planned to implement the dancing agents 
as a sort of state machine. The agents’ behaviour 
would then be controlled by a weighted 
combination of steering behaviours, for example 
seek and arrive at the bar to get a drink, avoid 
other dancers and walls. The active behaviours 
are kept on a list or vector which the state 
machine updates to effect the agent’s objective. 

I got as far as implementing all of the 
applicable steering behaviours, and the active list 
for executing them within the update() function 
of each dancer, or “boid”, object. I achieved this 
using the inheritance and polymorphism features 
of C++. Each behaviour is derived from an 
abstract Behaviour base class. Each boid then 
keeps a list of Behaviour base class pointers and 
calls their update() function each time step to get 
a steering force due to that behaviour. The 
steering forces are combined with a weighted 
average to make an acceleration force with 
which to alter the boid’s velocity 

There was a small problem created due to the 
fact that some behaviours require a list of boids 
on which to operate. For example the collision 
avoidance behaviour needs to know where all the 
other boids are in order to calculate a steering 
force to avoid them. The collision avoidance 
behaviours were incorporated directly into the 
boid class, rather than being weighted like the 
rest of the behaviours, to ensure that boids would 
never intersect each other or go through walls. 

Thus the collision-avoidance behaviour objects 
have to “know” about the boid objects and vice 
versa, creating a declaration problem. The 
solution was to inherit the Boid class from an 
abstract base class as well, thus allowing the 

behaviour objects to store a pointer to this base 
class and access data such as the boids’ position 
and orientation, while still declaring the actual 
Boid class itself after the behaviour classes. 

I also began implementation of the virtual DJ. 
The idea was that there would be a DJ class that 
would mix mp3 music files on-the-fly to 
simulate a real nightclub experience. The dancers 
would be animated to move in time to the music. 
I got as far as having the dancers flash in time to 
the music playing. Rather than trying to beat-
match songs at run-time, the approach taken was 
to use music-editing software to set the BPM of 
each song beforehand, then the problem of 
mixing the songs together was reduced to 
keeping track of how many beats had passed 
using a timer, and changing the volume of each 
song appropriately. Animating the dancers in 
time to the music can be accomplished easily 
since if the program knows the BPM of each 
song it is trivial to time the animation to match. 

I think I made a very good start on this project. 
Although there is no implementation of the state 
machine for each agent, the steering behaviours 
and animation timing work well. I decided to 
change project and investigate watercolour 
primarily because I found that my main interest 
in the dance simulation was in the music and the 
virtual DJ. While this is a fairly challenging area 
to develop, it seemed to me to be a little too far 
removed from graphics and animation, and I 
wanted to tackle a project that aligned more 
directly with my current interests in computer 
graphics. 


