An Experimental Investigation into Deriving
Procedural Creation of Abstract Images
From Photographs

Innovations Project Report

Will Alexander - d1111966

1. Initial concept and idea

Fundamentally, my project idea was to develop a program that would create
dynamic, complex and engaging abstract images, which exhibited effective relationships
between forms, light and colour. Early on I had the idea of constructing theses images not
from scratch, but perhaps using photographs as ‘seeds’ to the program, hence naturally
providing a range of variation, randomness and structure for the program to use and build
upon. Why do this procedurally? — to take advantage of the nature of procedural
programming; allowing a lot of repetition and variation to create complex results.
Implementing what is essentially a filter would allow, in theory, an unlimited number of
exciting compositions to be created. Some of the initial art works that inspired me were
those of Matta, Kandinsky and Turner. Having produced a lot of figurative, realism-based
work during my studies so far, I realised that it would be a fresh challenge to try
something completely abstract, and it would be ambitious for me as a goal.

2. Development of Idea

To actually begin, I needed to ground the project down to some tangible goals. I was
considering both the creative side — visual research and continuation of the idea, some
practical experimentation to develop my thought processes, and the technical side —
working out what I might need to research and explore, computer vision and image
processing for example. Visually, I was looking mostly at the work of Roberto Matta:

Some examples of the paintings of Roberto Matta, which were the initial inspiration behind my idea

I was immediately drawn to the works of Matta upon seeing Black Virtue (left), because
of their soft, flowing continuous look. Many of Matta’s works can be seen at [9]. They are
abstract images, and are unified into one, an anamorphous world of colour and light. The
viewer infers a space in the paintings, they evoke a sense of volume, form and texture; the

compositions are dynamic relationships, of which every feature is a part. The range of
shapes and impressions of forms is really interesting — levels of translucency change
around the space — open soft areas blend into solid looking surfaces that imply body parts
and other forms. I also like the complex colour relationships — not just linear monotone
mixes, but as in nature, a real diffusion of different hues and tones across the space. |
backed up interest and observation in this area by looking at works of Kandinsky and
Turner:

Some further inspiration and reference came from the work of artists Kandinsky and Turner

Much of Kandinsky’s later abstract work has a really strong dynamic feel to it;
every element of the composition moves the eyes along a fundamental direction of
energy. Turner’s works also inspired the direction of my project; the way Turner starts
with reality, but completely romanticises it by submerging everything in a continuous,
expressive space full of dynamic light and colour variation is akin to the process I wanted
my works to go through. The resulting pieces by Turner are impressionistic — light and its
impact are the subject of the paintings — objects and shapes fade and disperse into one
another, producing a fantastic range and depth of colours and suggestions of form
between.

After all this inspiration and research, I began to home in on an albeit vague aim: a
self-contained program which would extract certain pre-defined types of information
from an image: regions of brightness and colour, strong direction vectors in the image
etc., and use these to create an abstract composition involving many of the visual ideas
above. To try and observe my own thought processes tangibly, I tried manually creating
some of my own compositions, based on my intended style, and found this very useful for
uncovering some of my ideas; how do you break down an abstract composition into a
series of logical steps?

Some examples of my simple manual experiments

In my own paintings, everything was based on the ‘input’ image. I tried to
instinctively, without thinking too hard, pick out a handful of obvious principal regions in
the image for each, and extrapolate, spread them out in a seemingly natural direction. |
tried to back up these regions by ‘fading them out’ through different colours, to provide a
diverse range of colours and tones. Where there were obvious dynamic lines, |
manipulated other elements towards, or in the direction of, such lines. These large areas
are supported by more ‘scraggly’, lively strokes driven by the rate of falloff in colour, and
subtle features in the image. These trials helped me establish a few direct ideas:

» Start with a very simple, subtle base of just a few representative colours

» Take of the order of five to ten of the largest/brightest regions, and
dramatically build them up on top of this

* Allow these and other smaller regions to be manipulated by existing dynamic
lines in the image

* Although obviously not physically representative, I want the resulting output
compositions to be faithful to the input in terms of tone, colour and ‘activity’;
subtle, subdued photographs will produce similar feeling images, while more
diverse and dramatic photographs will also produce equivalent compositions.

An important part of the philosophy of this project was that the original image should
dictate everything. This didn’t just mean the colour range and contrast as I explained
above, but that any decision made within the program should in some way be based upon
the image. For example if there were effects being built up in layers, then the number of
layers could vary to make differing results between images; this would mean somehow
making a decision based on the image. Parameters to effects could be affected by the
image: how large to make individual region shapes, or how pronounced dynamic effects
are.

3. Getting Practically Started

At this point, I now knew some of the algorithms and techniques I was going to need
to implement the project. Many of the areas such as image segmentation and image
processing I new fairly little about, so I began researching the subjects in general by doing
some reading, and looked into some papers on specific methods, for example image
segmentation or detecting colour coherence for painterly rendering. I tried to not think too
much about specific applications of the techniques I was reading about, but to just learn
as much as possible to widen my ‘toolset’. As expected, most literature on computer
vision techniques and related areas has a very specific aim — realistic and totally correct
recognition of information, such that it could be reconstructed. However for my purposes,
all I needed was some interesting shapes and variation, total accuracy was not essential,
so some of the more involved techniques that would involve getting distracted from my
true aims, could be avoided. I reasoned that inaccuracy could almost be a bonus in my
case; I thought it would be especially interesting to use several different techniques for the
same purpose, e.g. region recognition, and then combining the results together. Having
multiple different approximations to the same shape could, in the context of the kind of
variation [was trying to achieve, be quite effective.

I knew by now that I wanted to be able to identify areas and regions in the image as 2-
dimensional shapes. This area of research is called Image Segmentation or Region
Detection, and is still very much an unsolved problem. After looking at some very
advanced papers on this subject, for example [3], there were two problems. These were so
advanced, implementing them would be a project in itself. On top of this, being papers,
each had very little profound content in its own right, being built on top of years of
research in some cases. Understanding the whole algorithm would have meant following
numerous levels of references. I decided instead to read through some books, which
actually start at the beginning. [1] was particularly useful for covering the range of
concepts and possibilities within image segmentation. Basic image segmentation methods
are based on one of two cores: Splitting or Merging. Splitting involves assuming that the
whole 2D image is one recognisable region, then testing to see if this is really the case. If
not, it is split in some way, depending on the algorithm. This produces more regions,
which are also tested for coherency. The process continues recursively until all regions are
assumed to be ‘correct’. Merging algorithms are essentially the opposite — they assume
that the smallest considerable areas (usually individual pixels) are all separate regions.
Neighbouring regions are then compared and merged into a new, larger region if they
satisfy some conditions depending on the algorithm. Splitting and merging are usually
fairly crude, and the next level of algorithm uses both. A Split and Merge method
involves splitting, and then considering the results for merging, before splitting again etc.
But even within this, there is a range of algorithms, some outlined in [1]. The quadtree
split and merge algorithm appealed to me most. It involves treating the whole image as a
rectangular region, then, if the variance of the region is above a certain threshold, it is
split into four children. This same process is then carried out recursively on all regions
until the tree reaches a maximum depth. During the process, nearby regions are

considered and those deemed to be parts of the same region are merged. The algorithm
was fairly skeletal in the book, and required a lot of practical development: my final
region segmentation algorithm is described in Appendix A. Here are some of the results
of the segmentation on images:

An example of my image segmentation algorithm detecting regions in an image

In order to pick out and include interesting details, I also wanted to implement
some edge detection algorithms. Again, I knew very little, but there was a good broad
discussion in [2] on the subject. Most edge detection methods, along with many other
image processing methods, use the idea of a convolution filter. This is essentially a matrix
that passes over every pixel in the image, describing how its filtered value is related to the
pixels around it. In the case of edge-detection, usually each pixel only depends on its
immediate neighbours. There is a range of similar filters, mostly involving subtracting
neighbouring pixels’ values from each other to obtain differential information (rate at
which colours are changing at that point). The higher this differential, the more
pronounced the change of colour in the image at that point, and the more likely it is to be
on an edge. I implemented two different edge-detection filters; the more complicated
examples can return other information such as the tangent and normal directions of an
edge at any pixel.

At this point I feel I should address the issue of why I insisted on developing many
of these algorithms myself, from scratch, when many are possibly available as usable
code and APIs. My justification is that in the general context of learning, actually
developing the code for the techniques is much more beneficial. On top of this, as I
researched many image processing ideas, in a wide variety of fields from edge detection
to cellular-automaton simulation of watercolour, I felt my intuitive understanding of, and
capacity for ideas for, images and colour and shape widening dramatically; I was making
notes of dozens of ideas. I would argue that this was invaluable later on in the project.

4. More Algorithmic and Visual Ideas

I found, given the intangible nature of the project, that knowing where to start was
difficult, I was trying to think about everything at once. I was having so many ideas, from
specific visual effects to general concepts of how the system might works as a whole. So I
tried to keep track of all this by making extensive notes of all my ideas, which I could
refer back to later. I reasoned that plunging in and doing research and experimentation
would help shape my idea and help me think about where to go next. Having the specific
challenge of implementing these routines kept me motivated, and the results, as I had
hoped, began to clarify for me how I might use them and put the final working program
together.

A key development that I made was a system to help bring dynamism to my
compositions. As described above, an exciting and coherent dynamic dense of flow,
present in Matta, Kandinsky and Turner’s work, was something I wanted to bring to the
images. I came up with the idea of extracting a small number of principal straight lines
from the image, and then using these to drive a ‘vector field’, which could be queried at
any point in the 2D image. This could then by used to create a sense of motion in many
different ways. I decided a good way to create such an effect could be to treat the lines as
magnets, propagating parallel forces into the space around them. The longer the line, the
stronger the forces it causes. The overall ‘force’ at any given point could be computed by
summing the forces of the lines in the image, using their distance as a falloff. For a
detailed explanation of the algorithm, see Appendix B. An example of how the magnetic
field looked on its own is shown here on a plane of noise for clarity:

The effect of a series of magnetic lines on some noise (left), with an example of a similar effect in Matta’s
work (right)

Producing this magnetic effect made me think a little about the philosophy of the
program as a whole — here was a mechanism that could be used several times in
conjunction with different ‘elements’ to produce a really varied and dynamic result.

S. Consolidating the Tools to Create Visual Results

As I began to end up with a set of usable tools, I also developed a framework for
dealing with images, to make the whole process easier. I wanted to start using the tools to
actually create something, and I began a series of early tests, using my code for its
purpose. While individually these were reasonably successful, I was still having trouble
seeing the big picture. At several points throughout development, I re-evaluated my
method, by taking a step back and trying to think about how my high-level solution would
work. Each time, I started from scratch in terms of how I would control the functions and
the image, and each time the result was better organised, since I was now better informed
as to what did and did not work, and what tools I had to actually work with.

With the image segmentation, edge detection and dynamic field, I had a small set
of tools, and sources of information, which I could begin to use creatively. One of the key
elements of Matta’s paintings that I liked was the contrast between open-feeling spaces
and solidity. I thought that to achieve this I could use my region-detection routine, and
isolate the particularly large regions, then build these up from a soft background by
continually blurring and adding them together, or fading them out in certain directions, or
manipulating them with the magnetic field, forming a transition from the background into
a very outstanding and overt shape. This result would, I thought, capture some of the most
important elements of the works I was trying to emulate. After a few experiments, I had
some reasonably promising results:

Some early tests of various combinations of the tools I had so far

Even with the fairly limited toolset and specific visual goal, it was nice to see that
running the program on a range of images produced some quite unpredictable results.

Some of the ‘solids’ in Matta’s work are less subtle and extremely overt, one can
make out actual 3-dimensional forms. My solution to generating such an effect was to
take the region detection tool that I already had at my disposal, and extrapolate some of
the resulting regions into 3D shapes. These could then be rendered, and combined into
the composition. Researching such an algorithm could have been a difficult task;
converting a quadtree-structured shape into a smooth piece of 3-dimensional geometry is

quite a specialised requirement! I felt confident enough in my own problem-solving
ability to design a method myself. Firstly, I needed a method for converting a region,
which comes out of the quadtree as an incoherent group of rectangles, into a single
outline. Then from this, an algorithm for extrapolating into a smooth, blobby 3-
dimensional form such as those seen in Matta’s work. After several stages of attempts, |
ended up with a successful method, the results of which can be seen below:

QDL

For a full description of the algorithm, see Appendix C.

6. Establishing an Overall Working Method

At numerous points throughout the project, I had given thought to how the
program would work as a whole. Having several interesting visual results was good, but
how to put everything together to produce a final self-contained program that would work
consistently and variedly with a range inputs, and produce results that looked exactly as I
intended, was a challenging idea.

One such idea was slightly removed from the course of the project so far: I
considered setting up every ‘effect’ as a module or node, which would depend on as many
or as few ‘attributes’ of the image or previously generated effects as it likes. These nodes
could then be linked together at random, to create all sorts of unpredictable and more
importantly complex, inter-dependent results. This was in a way linked to genetic
programming, and I considered going down that route, allowing a user to choose from a
variety of different dependencies and node combinations. However I decided not to
pursue this possibility for a number of reasons. After researching genetic programming, it
seems a fairly complex field, which would require too much time to introduce at this late
stage in the project. Another reason for keeping a distance was the question of whether |
actually wanted the results to be that unpredictable, or for the ‘user’ to have to intervene
and make choices; the original intended outcome of the project was to create images
closely resembling the works I had looked at. So as a result of this consideration, |
decided to adopt a more straightforward approach.

Another possibility that I considered was implementing several modular ‘stages’
to the program. Each stage would evaluate ‘attributes’ of the image, such as a ‘dynamism’

value, and a ‘constrast’ value. It could then use these attributes to make decisions about
what to carry out. Other modules could follow, taking more information out of the
composition so far, to make more decisions etc. However, by the time many of my
features were working, their success made me think more clearly and simply, so I decided
to try instead to build the whole program up like a painting: get the fundamental shapes
and composition working first, then build up with complex and dynamic detail, all using
the now extensive toolset I had. I would be able to keep adding features and effects to the
system, augmenting it as much as I could in the available time. This also allowed me to be
a little creative; some of my earlier results had shown me that once one begins coding to
process images, there are many possibilities and results that can be followed up, that had
not been planned. I wanted to not necessarily be completely tied down to the artworks I
was inspired by, but for there to be room for my own input as I developed the effects.

7. Developing the Final Program

As described above I decided to press ahead, building up my program in layers,
setting intermediate goals after which I could evaluate and decide where to go next. I
decided that the starting point should be to take a very blurred version of the original
image, removing the brightest colours, as the starting layer. Then identify the handful of
largest regions, about 5, and gradually and softly build these up on top of the background
in decreasingly blurred layers, so moving from an empty space to an impression of greater
thickness and shape. The blurred layers would take the region’s average colour combined
with a randomly selected colour from within the region, providing already a nice range of
colour variation across the composition. Because each built up region takes its colour
from its area of the original image, the brighter regions are more pronounced, the duller
ones more subtle, so the result varied, and faithful to the original image. At the ‘peak’ of
each of these built up regions, I render the region as geometry, to give that impression of
surface. The bright specular highlight on the geometry is the key element that ‘sells’ the
shapes as a subtle suggestion of surface. This would result in quite an interesting
composition, on top of which everything else could be built. As I developed, I always
tested the algorithm out on several input photographs to ensure, as far as possible, that the
method was a general one that would work and produce the desired result in many
situations. I found that the results were usually consistent across several examples, but
interestingly, there were always some that gave more unpredictable results. Here are some
of my initial tests into this first layer:

To further enhance the impact of the regions, I also replicated one of my more
successful earlier tests, namely using the magnetic field effect on each layer to give the
result a painterly, swirling, flowing feeling. In keeping with the philosophy that every
element and decision in the composition should be derived from the input image
somehow, I generated the magnetic field’s driving lines by creating a line from each
region to the space between two random others. This also had the advantage that the field
would appear to be related to the region shapes, bringing coherency to the effect. As an
interesting aside, when allowed to dominate, this effect created some nice results in its
own right. When applied in a more subtle way, the results of this layer brought a lot to the
compositions:

At this stage, I felt that the compositions needed more detail, something to break
up the total smoothness present. I started to think about the beginning of the end, trying
to move towards a final result. Looking at the artists’ work again, they seemed so much
more complex than my results. I realised that I needed to be a little less conservative; so
far, I had very tight control over what the program was creating, but the complexity and
excitement of some of Matta’s work could not be thought out so methodically at every
stage. I realised that the various layers and effects needed to merge together and be part of
a whole, and not obviously discernable; the resulting images would not work if they were
all clearly a formulaic combination of three algorithms. I decided that I should create a
more general effect for the next stage, based perhaps on several of the visual elements I
wanted to convey, and also very broad so that it could be ‘added on’ multiple times to
produce a varied cumulative effect. It made a lot of sense to get the most out of the
complex routines I hade developed so far — the image segmentation and geometry
construction among other things had taken a long time, and so far were underused. For
example, I found that some of the smaller regions produced were interesting shapes that

could really add to the composition. I realised as I started combining these with other
existing algorithms: magnetic fields, lines etc, that I had barely scratched the surface of
what could be done by combining these tools. The result was a ‘general’ layer which
created geometry from a large number of regions in the usual way, and allowed these
regions to be added on, or to be ‘multiplied’ by the current composition. Regions are also
manipulated by magnetic fields and are blurred. Intentionally, there are several
parameters to this routine, the idea being that the controlling function will call the apply
the effect several times, varying the parameters each time:

A number of more specific effects were developed as well. I wanted to include
some direct straight lines in the composition, because of their strong directional graphic
effect. Lines were generated by picking a random point in a magnetic field as a start
point, then following the force vector at that point, to create an end point. This resulted in
quite an effective dynamic visualisation of the field. In order to avoid the lines appearing
like a separate entity, they ‘taper off” toward their rear end, to blend seamlessly with the
rest of the composition:

I felt that more scraggly and random ‘stringy’ lines were also necessary. To
generate such artefacts, I found another good way to get more out of the methods that I
already had in place. The intermediate result from the geometry creation algorithm, is an
outline with nice shape to it. This outline can then be rotated and scaled to slightly
disassociate it from the regions geometry. Varying the thickness of these strings and
burring them ‘strings’ depending on the brightness of the image below, gave a range of
results from bold lines to flickering suggestions.

This latter stage of the project was in some ways the most enjoyable part; I had
developed all of the complex tools and algorithms I needed, and I was now able to use
them to create all sorts of dynamic relationships. I realised that all the research and hard
work early on was worth it, to give me so many workable options and information later
on, although inevitably I had to write some new routines at certain points. I did also find
this final stage quite slow, capturing some subtle effects in code and in a general sense
was hard, but a great challenge.

8. Succinct Description of Final Production

I decided to use the C programming language for development, since I was most
comfortable with it, and I used the Image Magick Library for dealing with importing and
exporting images. I developed a simple set of data structures and functions for using
images, which I stored as unsigned bytes. The fundamental structure of the program is as
follows:

* Import input image

* Compute a set of information about the image — for example edge
detection, raster and geometric results from image segmentation. Return
this through a data structure

* First a soft blurred background is applied.

* Smear function called with a handful of regions, to add a dynamic swirling
effect to the background

* Region build up function called with similar regions, to give a transition
from soft empty background to hard suggestions of solidity

* Several detail-producing functions called, the parameters of which are
derived from the input image itself, to produce varied results

» Extra effects such as straight and scraggly lines are added

* Export the image

Demonstration of the layered progression of images

9. Conclusion and Evaluation

In conclusion, I would say the project has been mostly a success. It has challenged
me even more than I expected, in the areas I wanted to be challenged, and I am quite
satisfied with many of the results. The nature of the project was certainly different to
most programming that [have done before; the lack of singly defined logical or even
visual goals was a sharp shock for me, and I’ve enjoyed and learned from the very
experimental process which resulted. The focus and process of what I was doing did
begin to evolve as the project neared completion, I realised that trying to have one single
‘filter’ at the end was pointless, given the sheer number of varied effects that I was trying
to capture. My work became very much an experimental process of attempting differently
styled compositions, brought about by concentration on different specific effects. I also
let the project go in its own direction to an extent — letting incorporating ideas from
results that were unplanned and unexpected. Given this, I have been pleased with the
results; I have successfully managed some of the specific features that I was trying to
create, for example the blending from soft colours to a subtle suggestion of volume and
form. Many of the compositions that I was creating toward the end really captured, |
thought, my fundamental goal of a feeling of empty space, solidity and three dimensions.
Compositions are also fairly faithful to their input images, where colour and dynamism
are concerned.

However, in all honesty I would say that the one distinct failure, if any, was one of
my concerns throughout: tying all of these aspects together effectively such that they are
all apparent and have their desired effect, but also produce a successful composition
overall. On top of this, I didn’t manage much substantial work into varying the
significance and ‘parameters’ of the various effects/layers based upon the input image —
many of my results are similar in style and scale of effects, not getting the most of the
effects.

I feel in retrospect that I have only begun to scratch the surface of what would be
possible with this idea; not just in terms of different ways of going about my aims or
different effects entirely, but even in that the ways I am combining the algorithms I have
already devised could have gone much further. In terms of how I might approach the
project were I to attempt it again, [would try to carry out more extensive research into the
area of abstract image creation, better feeding my imagination and awareness of existing
ways of thinking. An obvious question of difference of method were I to change the way |
worked would be the way I developed everything from scratch, rather than drawing on
existing resources. Some complex routines, such as region detection, could have been
done ‘for free’, but I am pleased that I developed those as I did, because the aim of this
project was to challenge myself in an area that I knew little about, and researching and
implementing those algorithms myself allowed me to do that.

Future work could, I thought, involve creating moving images, perhaps through
processing a whole sequence of images. But quite an exciting idea would be to use the
effects that I have created, and generate sequences from those. For example allowing the
magnetic fields to actually move colours and shapes over time, or taking advantage of the
three-dimensional shapes by moving that camera viewpoint around and through them,
creating captivating moving compositions just from one image.

[1] JAIN, R., KASTURI, R. AND SCHUNCK, G., 1993. Machine Vision. Singapore:
McGraw-Hill.

[2] UMBAUGH, S.E., 1998. Computer Vision and Image Processing. LLondon:
Prentice-Hall, Inc.

[3] FELZENSZWALB, P.F., HUTTENLOCHER, D.P, 2004. Efficient Graph-Based
Image Segmentation. International Journal of Computer Vision, 59 (2).

[4] HERTSMANN, A., 1998. Painterly Rendering with Curved Brush Strokes of
Multiple Size. In: Proceedings of ACM SIGGRAPH 1997, Annual Conference
Series, ACM, pages 453-460.

[5] McMILLAN, L., Line-Drawing Algorithms [online]. Dept. Computer Science,
University of North Carolina.

Available from: http://www.cs.unc.edu/~mcmillan/comp136/Lecture6/Lines.html

[6] VINCE, J., 2001. Essential Mathematics for Computer Graphics Fast. London:
Springer-Verlag Ltd.

[7] COMNINOS, P., 2006. Mathematical and Computer Programming Techniques for
Computer Graphics. London: Springer-Verlag Ltd.

[8] HUXTABLE, J. Java Image Processing [online]. Available from:
http://www.jhlabs.com/ip/blurring.html

[9] ROCK, T., 1997, Matta: Art Gallery [online]. Available from:
http://www.matta-art.com

http://www.cs.unc.edu/~mcmillan/comp136/Lecture6/Lines.html
http://www.matta-art.com/
http://www.jhlabs.com/ip/blurring.html

Appendix A: A detailed Quadtree Split and Merge Image Segmentation Algorithm

The object of this algorithm is to split the image up into a set of regions. Regions
are defined as a group of cells. Cells are rectangles, of the same ratio as the image itself.
These cells belong to a quadtree on the image, and are defined as a structure in the
program. A cell has pointers to its children and parent, and its boundaries are represented
by 4 integers:

typedef struct quadNode

int left,right,top,bot;
color colorAv;

int leaf;

int further;

struct region *segmentRegion;

struct quadNode *next[4];

struct quadNode *prev;
}guadNode;

The regions of the image are stored in a doubly-linked list, so that as regions are
merged and split, the list can be easily edited. Each region contains a linked-list of all its
constituent cells, as well as the ‘area’, the number of pixels covered by the region:

typedef struct region

{
struct quadPointer *cellRoot;
int area;
struct region *prev;
struct region *next;
} region;

The largest cell possible is the perimeter of the whole image. Depending upon the level of
depth the quadtree is allowed, the smallest potential cell is the size of one pixel.

1) Assume that the whole image is one single region defined by one cell, and that
it will be broken down at least once

_ | el

At each level of depth, cells with more than acceptable variance are broken down into four children

2) At the current level of depth, loop over all cells that have a high enough
variance to split into four children. For each cell:

a. Split into four. Make the original cell node point to its four children,
and each child point to the original cell node as its parent.

b. Create a brand new region with this new cell as its only member

c. Compute, from the original image, the average colour of this cell

d. Compute the variance of the cell by taking a set number of samples. If
this variance is below a certain threshold, this cell contains just one
region, and will never be split again. If not, this cell needs to be split
and go further. Mark it as such.

Some cells may be broken down due to high variance, after which
some of their children join together again to form the coherent region

3) Take the list of these new depth level cells, and loop over all of those that do
not need to go further. For each:

a. Internal Merging: Compare the cell to other sibling cells that also need
to go no further. If the distance between their average colours is below
a certain threshold, then merge the two regions of which the cells are a
part.

b. External Merging: Use the parent and child links in the quadtree
structure to navigate, and, based upon where the cell shares an outer
edge with its parent, test each adjacent cell.

c. If the average colour of the adjacent cell and this are below the
threshold, then merge the two regions of which the cells are a part.

4) Repeat Step (2) for as long as the current level of depth does not exceed the set
number.

The structure of the quadtree is now lost, and we have a linked list of regions
covering every pixel on the image. Each region contains a list of its constituent cells.

A fully segmented image

Appendix B: An Algorithm for Creating a Dynamic Magnetic-like Field in a 2D
Space

The magnetic field algorithm works by allowing a set of lines, defined by data
structure ‘line2D’, to apply a force field in the two-dimensional space of the image.

typedef struct line2D

{
point2D s,e;

struct line2D *next; [*for use as a linked list*/
}ine2D;

The ‘force’ caused by a line is computed depending on the position from where
the force is queried, and is the sum of the forces from all of the lines on that point. For
each line:

1) Transform the point by transformation that moves the line to the origin, and
oriented with the x-axis. The point’s position relative to the line can now
easily be computed.

2) If the point’s x coordinate is within the bounds of the line, then the force
applied by the line is parallel.

3) If the point is beyond either end of the line by more than a quarter of the line’s
length, the direction of the force is from the closer end of the line, to the point,
or the reverse depending on the end in question.

4) If the point is in either outer ‘quadrant’, i.e beyond the line by less than a
quarter of its length, then the direction of the force applied is a linear blend
between the other two possibilities.

5) The magnitude of this force is diminished exponentially based upon the
smallest distance from the line

6) Transform everything back to original space

Magnetic Line

\— Quter Quadrants J

Diagram showing the how force direction depends upon position relative to the magnetic line

The sum of all of these forces gives the net magnetic force in the field at that point:

Diagram showing the cumulative effect of several ‘magnetic lines’ as a field

Appendix C: Method for converting groups of rectangles into a single coherent

rendered piece of 3-dimensional geometry

This algorithm starts with a region, defined as in the result of Appendix A, i.e. as
an unordered list of rectangular cells, and converts it into a single, smooth rendered three-
dimensional shape:

T

Firstly, the region must be turned into a polygonal outline, that is to say an ordered
list of points that follow around the perimeter in a cycle:

1)
2)
3)

4)
5)

6)
7

8)

Redefine list of cells as sets of four corner points, rather than sets of four
boundaries.

Cycle through the resulting cells to find one with the left-most edge. This is
the ‘current cell’ to start with

Start with the top-left vertex of the cell as the current ‘point’

Add the position of the current point to a list

Transform the whole set of cells such that the current point lies at the origin,
and the direction from the current point to the current cell’s next point anti-
clockwise, is vertical.

Assume that this is the next point on the perimeter

Process through all other cells to see if any has an edge with a Y-coord less
than the next on the current cell

If there is a closer edge, then its cell becomes the new current cell, and the

point on the edge with an X-value of zero is the new current point.
9) For as long as we don’t come across the original cell and point, repeat steps 4
-7

The result of this is a list of points that describe the outline of the region. In order
to remove that obvious rectangular-edged look that results from the quadtree method, this
list of points is used to construct a simple B-spline. The curve theory in [6] describes the
equations that were used. Sampling the spline at regular intervals then generates a new set
of points. The result is a shape that is still fundamentally the same as the original region,
but continuously smooth.

The next step is to turn this outline into a piece of geometry. This I achieve by
looping over a regular grid in 2D space, and each square from the grid that intersects the
new polygon, becomes a polygonal face. This gives a sensible, regular distribution of
points over the region’s surface. The data structure for storing the geometry is as follows:

e Both vertices and faces are stored in a linked list

* Each member or each list refers to the other list, that is to say each vertex
has a list of the addresses of the faces it is part of in the face list, and each
face has a list of its constituent vertices in the vertex list

* This way, no vertex is stored twice, and the data is stored in a convenient

way to convert to Renderman’s format later
The nodes of the data structures are as follows:
The geometric information is created as follows:

1) For a given granularity, loop over all squares in the grid of the image.

2) For each, check to see if any of its four vertices are within the shape.

3) If so, then this square forms part of the final polygonal mesh.

4) Clip the square against the outline, so that any squares at the edges lose their
square shape and match that of the region shape. Use the Sutherland-
Hodgman clipping algorithm, as described in [7].

5) For each vertex of this final constituent face:

a. Compute the closest distance between it and the edges of the region
outline. Record this value

b. Add to a global list of vertices, only if the point has not already been
recorded by a different face sharing the same vertex.

6) Once all squares have been processed, Loop over all vertices and discover the
maximum distance any point was from the outline. Use this maximum
distance to set the Z coordinate, such that points further from the edges are
extruded, and points closer to the edges remain closer to the XY plane. This
results in a nice ‘bobby’ shape.

7) Now the final 3D coordinates of each vertex has been set, loop over all of the
faces again to compute their normal vectors.

8) Finally, loop over each vertex and compute its normal as an average of the
normals of all the faces of which it is a part.

Diagram showing how vertices’ distances from the shape perimeter can be computed. Blue represents
points directly on the perimeter, red represents points furthest away from the perimeter

We have now obtained a sensibly structured description of a piece of geometry. The
next step is to process, and write the data to the Renderman RIB file format. A simple
shader is attached to the geometry, which is then rendered from an orthographic

viewpoint to produce an image of the blobby-looking version of the region. Three
greyscale images come out: a depth shaded version so that the region’s edges can be
identified, the fully shaded version, and a flat white version displaying just the 2D shape
of the region. This image can now be re-imported by my program, to be used
appropriately.

Depth, shading and shape information are rendered for use by the program

	1. Initial concept and idea
	2. Development of Idea
	3. Getting Practically Started
	4. More Algorithmic and Visual Ideas
	5. Consolidating the Tools to Create Visual Results
	6. Establishing an Overall Working Method
	7. Developing the Final Program
	8. Succinct Description of Final Production
	9. Conclusion and Evaluation

	The sum of all of these forces gives the net magnetic force in the field at that point:
	:
	Diagram showing the cumulative effect of several ‘magnetic lines’ as a field

