

Dean O’Keeffe

BA Computer Visualisation and Animation
Year 3

Innovations Project

Autonomous Traffic Generation for

Production Animation

 1

Abstract

This report represents the research and development of an application that

could be used for the creation of autonomous traffic in production

animation.

The report begins by examining flocking systems and steering behaviours.

An example of ambient traffic within a game environment, which uses some

of these steering behaviours, is then examined. The report briefly discusses

the advantages and disadvantages of implementing these behaviours into an

autonomous traffic generator for production animation.

We then discusses the two possible languages that the application could be

written in, Maya’s MEL scripting language or the C programming language.

Advantages and disadvantages are discussed for both approaches and a

solution is reached.

The report then describes the methods used to represent a road network and

how vehicles are controlled around that network. The report then explains

how these methods are implemented within a C program. The fully

commented source code is also included.

Finally, the report examines the success of the application and explains how

the application could be developed further.

 2

Contents Page

Section 1 – The Concept Page 4

Section 2 – Research Page 6

Section 3 – Development Environment Page 12

Section 4 – The Program Page 15

Section 5 – Conclusion Page 22

Appendix 1 – The Commented C Program Code Page 25

CD Contents Page 34

CD Instructions Page 34

References Page 35

Bibliography Page 36

Acknowledgements Page 37

 3

The Concept

The animation of a street scene in a production may require the presence of

ambient traffic. This ambient traffic could be manually animated by an

animator and this would be a relatively simple task. Consider that this scene

then increases in scale, or that the density of traffic increases, so that the

street scene scales to a full city environment. The animator’s job has become

highly complex. Not only must the animator consider the movement of the

car, but the interaction of all the cars within the scene. Each car influences

every other car and it can be said that there is an exponential increase in the

complexity of the animation. There is now a substantial amount of planning

and keyframing required by the animator.

The problem becomes even more troublesome when changes are required in

the traffic. For example, consider that the traffic has been manually

animated and each car has been keyframed, a decision is then made that one

of the cars needs to be removed from the scene. This would almost certainly

result in the animation falling apart. A car that had been animated to

approach a junction and queue behind the removed car would now look

peculiar, as there would be an open space in front of it. Traffic may also

wait at junctions when the road was clear because previously the removed

vehicle had been travelling along that road. More problematic would be the

insertion of extra cars, as all other cars would need re-keyframing to avoid

collisions that cause them to pass through one another. To summarise, the

whole scene would require re-planning and re-animating every time the

 4

volume of traffic was adjusted. This is an inefficient use of an animator’s

time and would be a tedious task.

This project examines the various techniques available that could be used to

create autonomous traffic for production animation. A selection of these

techniques are then interpreted and implemented to create a product that

would allow the generation of complex road networks. The traffic in these

road networks would be aware of other vehicles and react accordingly. For

example, traffic would queue at junctions. The traffic in the road network

would also be controlled by a traffic light system at junctions. The most

important aspect of the final product is adaptability, the product must be

scaleable so that more complex roads such as roundabouts, T-junctions and

slip roads can be constructed and implemented without drastic

reconstruction of the product.

 5

Research

The first area of research was flocking systems. Papers produced by Craig

Reynolds became the major reference point for this area of research.

The basic flocking model consists of three simple steering behaviours

which describe how an individual boid manoeuvres based on the

positions and velocities its nearby flockmates; separation, alignment

and cohesion. Separation steers to avoid crowding local flockmates,

alignment steers towards the average heading of local flockmates and

cohesions steer to move toward the average position of local

flockmates 1

As a driver and after observing traffic I would certainly support the theory

that vehicles also adhere to these rules at some level. Cars will maintain a

certain amount of separation when travelling. In the case of the flow of

heavy traffic in one direction this would be, on average, a two second

difference in passing a fixed point. This creates a variation in the separation

distance that is dependent on the speed of the vehicles. In reality this is to

take into account braking distances and reaction times. Traffic flowing in

opposite directions will, in the UK at least, maintain separation by keeping

to the left, thereby avoiding head on collisions. This is linked into

alignment, cars will align themselves in traffic but this is due mainly to the

fact that the cars follow roads and road markings and cannot venture off

them in normal circumstances. Cohesion in cars is actually not desired in

traffic as this usually means that there is some form of traffic jam, cars will

 6

tend to want to take separate routes to avoid bottlenecks. Cars do not act as

a flock over time; each car will have some form of target location that will

be independent of other traffic, which will result in the car leaving the flock.

Cars will tend to only act as a flock on a micro scale, when travelling along a

road amongst heavy traffic for example.

To conclude this area of research it can be said that flocks would allow the

representation of traffic at some level but there would need to be some

adaptation to create a realistic traffic system. This led to research into more

advanced steering behaviours for autonomous characters. Once again Craig

Reynolds had written the most definitive paper on this area of flocking

systems.

Steering behaviours for autonomous characters presents a collection

of simple, common steering behaviours which includes seek, flee,

pursuit, evasion, offset pursuit, arrival, obstacle avoidance, wander,

path following, wall following, containment, flow field following,

unaligned collision avoidance, separation, cohesion, alignment,

flocking, and leader following.2

Of particular interest and relevance to the creation of autonomous traffic

would be obstacle avoidance, path following, wall following, containment,

separation, cohesion and alignment. The latter three have already been

discussed in relation to autonomous traffic. Here follows my interpretation

of how the remaining steering behaviours could be implemented into

autonomous traffic generation. Obstacle avoidance has an obvious

contribution to offer for traffic simulation. Traffic cannot be allowed to

 7

collide, unless this is the desired effect, so some form of obstacle avoidance

must be implemented. In reality, traffic will avoid obstacles such as walls

but we can also consider other traffic to be obstacles, and this will determine

how traffic flows. For example, at a busy slip road a bottleneck may occur

as traffic flow slows to avoid collisions. Path following could be

implemented as all possible routes for the traffic could be pre-calculated.

Traffic then chooses which path to follow at predetermined points, such as

junctions. Wall following may be useful as the traffic is required to stay on

the left hand side of the road. Wall following would be one way to

implement this.

The problem with this approach is the summing of these simple behaviour

parts to create the more complex traffic whole. This is discussed, and

several different approaches are suggested, in Reynolds paper2. This

approach would have been possible, but would have lead to a very large area

of research and experimentation. It was felt that other more simplified

solutions could be found and this lead to research in into how games

developers approach these problems.

 8

Figure 1. Traffic queuing at a traffic light junction in GTA3.

Modern games are certainly very sophisticated, but limitations still exist for

games developers in terms of the amount of memory and processing power

available. This results in developers approaching problems in creative ways,

ensuring that they get the most out of the platform they are developing for.

Games such as Grand Theft Auto 3 (Figure 1) and Midtown Madness

(Figure 2) are amongst a collection of recent games that feature real-time

ambient traffic within the in game environment. Fortunately Angel Studios,

the developer for Midtown Madness, have produced an excellent article

discussing the techniques employed for the creation of ambient traffic3. As I

understand the paper, Angel Studios have employed a path following

technique for the cars, some of these paths are predetermined but some are

plotted on the fly.

During normal driving conditions, all the ambient vehicles are

positioned and oriented by a 2D spline curve. This curve defines the

exact route the ambient traffic will drive in the XZ-plane.3

 9

Since the lanes for ambient vehicles on each road are defined by a list

of vertices, a road sub segment can easily be created between each

vertex in the list. When the ambient vehicle moves from one segment

to the next, a new spline is calculated to define the path the vehicle

will take. Splines are also used for creating recovery routes back to

the main rail data. These recovery routes are necessary for recovering

the path after a collision or a player-avoidance action sent the ambient

vehicle off the rail. Using splines enables the ambient vehicles to

drive smoothly through curves typically made up of many small road

segments and intersections.3

Figure 2. A screenshot from Midtown Madness showing two of a variety of vehicles that

can be found amongst the ambient traffic.

This approach certainly works, but it has to meet requirements for the game

that are not required for production animation. Although the cars follow

paths, they can be taken off these paths during collisions as the player

interacts with the game. The ambient traffic must always be ready to plot a

 10

new path back to the predetermined paths at any time. This is not required

for the production animation system as all traffic activity can be predicted.

One last area of research worth mentioning is engineering projects. Traffic

simulation is a valuable tool when it comes to town and city road planning.

The opportunity to test new road networks in a virtual environment allows

groups to see systems working and refine them before spending large

amounts of money on building them. Unfortunately there are few papers on

this area that contain relevant information or that reveal useful ideas. The

majority of papers are old and most websites are dead links. This may be

because these projects have a high monetary value, and it is understandable

that companies and individual are protective of their latest techniques.

In summary we looked at flocking systems and steering behaviours for

flocking systems. Research was then concentrated on the games

development and it was discovered that one developer had employed a path

following technique in the creation of interactive ambient traffic.

 11

Development Environment

Two development environments were considered for the implementation of

autonomous traffic generation. These were MEL, the Maya Embedded

Language, and the C programming language. Both approaches had

advantages and disadvantages, which we shall cover, that influenced the

final decision.

The major advantage of MEL is that it allows full access to Maya’s

capabilities. For example, particles along with any other object within Maya

can be created, animated and keyframed using a MEL script. Anything that

can be achieved using Maya’s graphical user interface can be accessed

through MEL. This is a huge advantage in development as ideas can be

tested manually using the graphical user interface before being incorporated

within the MEL script. An additional advantage of MEL is that it is a

scripting language. This avoids compiling and linking of the code before

runtime, consequently results can be seen immediately and are evaluated in

real-time.

Unfortunately MEL is not the most ideal development environment as the

development tools available are both limited and weak. A good example of

this would be the lack of debugging tools. This makes it harder to track and

construct a large well structured script, this is a major disadvantage.

 12

Another disadvantage of using MEL is that it does not support pointers,

although values are passed by reference to functions. This could restrict a

programs design. Additionally MEL does not appear to support structures,

which are used to store a collection of variables that can differ in type. MEL

can only offer arrays, which can only hold variables of the same type. This

could again restrict the programs structure.

The C programming language by comparison is widely supported, well

documented and has a large quantity of tools available to aid the

development of applications. Structures and pointers are available as well as

many other data structures. By using Microsoft Visual C++ 6 errors, such as

syntax errors, can be easily detected in the code and crashes can be avoided

by running compiled applications through a debugging tool. Visual C++

also allows the program to be displayed in a clear and structured manner and

allows the user to access members of structures using shortcuts, speeding up

code input and avoiding typographical errors.

The disadvantage of using the C programming language is that there is no

high level graphics library that could rival Maya’s rendered output available.

Since the autonomous traffic is for production animation this presents a

problem. My solution to this was to have the C program output MEL

commands to a MEL file. This MEL file can then be loaded into Maya to

control vehicle objects within the scene. This pipeline is shown in Figure 3.

 13

Autonomous traffic executable

 ▼

▼

Generates MEL file

 ▼

▼

MEL file opened in Maya scene

Figure 3. Pipeline of autonomous traffic generation.

This solution offered the best of both environments, the well supported

development environment of the C programming language and the advanced

capabilities of Maya that could be accessed by MEL.

 14

The Program

The autonomous traffic generation application is based around the idea of

location nodes. This basically means the road network is populated by a

series of location nodes. Location nodes represent points where cars can

travel to on the road network. The process begins by building the road

network scene within Maya. Cubes, which are used to represent the location

nodes, are positioned in the scene in such a way that a vehicle could travel

between them throughout the road network without leaving the road or

colliding with obstacles. These cubes are invisible within the scene, and are

only used to plan the layout of the location nodes and gain X, Y and Z

locations within the scene. Figure 4 shows how a series of location nodes

can be used to represent the routes through a bend in a road. Also note how

location nodes representing the path of traffic on opposing sides of the road

cannot be allowed to cross as this would result in a collision.

The location nodes are also allocated numbers which allows a list to be

formed that represents connected nodes. For example, Figure 5 shows how

each location node can have a maximum of three location nodes as the next

location node. From location node 1 a vehicle has a choice to travel to node

2, node 3 or node 4. If there is no next node the next node member of the

location node is given a null value.

 15

Figure 4. Nodes can be positioned to allow cars to travel around bends.

Figure 5. Connected nodes through a four way junction.

 16

Location nodes also have two other tasks. Location nodes have a status

attribute that indicates whether a vehicle occupies that location. This is to

avoid having two or more cars at one location, which would constitute a

collision. The second attribute indicates whether a vehicle located at that

node has permission to move to the next node. This is used to represent

traffic lights, if there is a red light then the permission of that location node

will stop a vehicle from moving off. Permission could be used for any

circumstance where vehicles are required to stop, such as normal junctions

or pelican crossings, but these would require independent algorithms to set

the permissions.

The location node data structure must hold the following information:

 Next node 1, Next node 2, Next node 3

 Status

 Permission

 X, Y, Z

The next structure is the car node. The car node represents the car travelling

around the network of nodes. The car node holds a value that indicates

which location node the car is currently located at. The car node also holds

an X, Y and Z value that is fetched from the current location node.

The car node data structure holds the following information:

 Current location node

 X, Y, Z

 17

The program then has the responsibility to maintain the car and location

nodes whilst moving the car nodes around the location nodes. To

demonstrate this and prove that this method works I created an application

was created that controlled 4 car nodes across a four way traffic light

junction. I chose this type of junction because it can be connected to other

four way junctions easily to create a larger road network. The basic program

flow can be seen in figure 6.

The program begins by setting the car nodes in start positions. This is done

by giving the car node member a location node value. The next stage is to

initialise the permissions of the location nodes that represent the traffic

lights, and this is a function that we shall call change lights. We must ensure

that only one location node has its permission set to 0, so that only cars

waiting at that node can proceed across the junction. The change lights

function randomly sets one of the junction nodes permission to 0, and

changes the other location node permissions to 1.

The next stage is a for loop through the frames, starting at frame 0 and

incrementing by 50 frames at a time. The program prints the new frame

number to a MEL file in the following way:

fprintf(cfPtr, “currentTime %dpal;\n”, frame);

Which, if the value of frame was currently 150, would read in the MEL file

as:

currentTime 150pal;

When opened in Maya’s script editor this would set the current frame to 150.

 18

Figure 6. Program flow of the autonomous traffic generation application

 19

If the current frame is equal to 0 the application will set the keyframes for

the car nodes current locations, which will be their start locations.

Keyframes are also set by printing to a MEL file.

fprintf(cfPtr, “setKeyframe –value %d car_%d.translateX;\n”,

car[carCount].x, carCount);

This is repeated twice more, once for the Y value and once for the Z. If the

current car node was car node 3 and it’s X component was 20, the above

statement would read in the MEL file as.

 setKeyframe –value 20 car_3.translateX;

When opened in Maya’s script editor this would translate an object named

car_3 by 20 in the X axis and then set a keyframe. This is where it is

important to have set the current time, as the keyframe is set at the current

time. Failure to set the current time would give strange results.

The next stage is to see if the current frame is divisible by 200. If it is, then

the change lights function is called. This means that the traffic lights change

every 200 frames. The traffic lights change in sequence, which allows each

junction location node to have its permission set to 0 once every 600 frames.

The application then loops through each car. The first step is to determine

whether the cars next node is valid. If the cars next node has a null value,

represented by -1, then the car cannot move to that node. The car is then

keyframed in its current location in the same way as previously described.

 20

If the car has at least one valid next node then this is assigned to a temporary

variable. The next node is decided by calling the next node function. This

function determines whether the location node has more than one next

location. If it has, the function randomly selects one and returns it to a

temporary variable.

However, if the next node location is already occupied by a car, the status

member of the location node has a value of 1, or the current location node

has its permission set to 1, the car cannot be allowed to move. The car is

then keyframed in its current location.

If the permission and the status indicate that the car can be allowed to move

then the following changes are made. The current location node’s status is

set to 0. This is because the car will no longer be occupying this location.

The next location node’s status is then set to 1, since the car will now be

occupying this location. The car node’s current location is assigned the

value of the next location node, which now becomes the current node.

Finally the car’s X, Y and Z values are assigned the X, Y and Z values of the

new location node. The car’s new X, Y and Z values are then keyframed in

the usual manner.

This process is looped for as many frames as the user wishes, but since this

application controls cars within a small junction it only loops through 1000

frames. This is more than adequate for the cars to reach their final positions.

For the code implementations of this program please refer to appendix 1,

which contains the fully commented C code.

 21

Conclusion

The program successfully controlled traffic travelling through a four way

traffic light junction. The application successfully generates a MEL file that

can be loaded into a Maya scene. This proves that this technique can be

used to create autonomous traffic. There is no reason why the scale of the

application could not be increased incorporate and control a larger road

network.

Using the location node method we achieved a high level of control over the

movement of the cars. This avoided unexpected results that could have

resulted from using a behavioural flocking system, which relies on the

agents calculating their behaviours correctly. The location node system also

offers a simple built in collision avoidance system. This avoided the need

for additional collision detection that could have been problematic in

implementation as well as time consuming because of the additional

research required.

Adaptability was one of the requirements of the autonomous vehicle

generation application, this has been achieved. The location node method

allows for the inclusion of a hilly road network since the location nodes

contain the X, Y and Z components of the location in the scene. This

method allows the car’s X, Y and Z location in the scene to be keyframed, so

the car can move up and down. Secondly, any junction or road layout could

be represented by using location nodes; all that is required is a function for

 22

each junction type which would control the location nodes within that

junction.

The first disadvantage of using location nodes is that the user must manually

determine how the location nodes connect to each other and then set the

location nodes within the C code. This was fairly simple for a single four

way junction but the number of location nodes increases rapidly when trying

to construct a larger road network. There are two possible solutions to this

problem. The first solution would be to construct each road and junction

independently. Groups of location nodes that represent junctions and roads

could then be connected like building blocks. The only task is to then

renumber the location nodes, which should be a simple operation. The

second solution would be more complex, and would require an algorithm to

determine a path between nodes automatically. Path finding algorithms are

available, but this would require a large amount of additional research.

An obvious disadvantage of the current application is that the motion of the

vehicles is very simple. A solution to this could be to increase the number

of location nodes. This solution makes the previous disadvantage even more

apparent. More location nodes require more work to determine paths.

Looking back to the research stage a solution may be to implement the same

method Angel Studios employed for smooth motion in Midtown Madness.

This solution would involve a spline curve being drawn between two nodes,

with the vehicle then following this curve. It has been proved by Angel

Studios that this method gives some very realistic results.

 23

By implementing three of these solutions we could create a very advanced

car motion. These solutions are to increase the number of location nodes,

implement a pathfinding algorithm to determine a route through connected

nodes and finally to draw a curve through these location nodes. This would

allow vehicles to move around obstacles in the road, such as a parked car,

since there would be more than one location node that the vehicle could pass

through.

These solutions would be extremely difficult, although not impossible, to

incorporate into the current system of the program writing to a MEL file.

The solution to this could be to rewrite the application in C++. C++ offers

even more facilities for better structured applications than C, which in turn

offers more flexibility and would allow the application to grow. The second

step would be to integrate this application into the Maya C++ API. The C++

API offers even more control within Maya than MEL. This allows the

application to work within Maya. This should make it easier to implement

the drawing of curves for example, since Maya can already do this. This

would therefore help the user since they would not need to program this

functionality.

Overall it can be said that the project was successful. The application proves

that the idea of using location nodes works. However, the animations

created are not to the standard that would be required for a production

animation. This would require the integration of the more advanced

solutions discussed.

 24

Appendix 1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef struct { /* Location node structure definition */
 int nextNode_01, nextNode_02, nextNode_03;
 int status, permission, x, y, z;
 } locationNode;

typedef struct { /* Car structure definition */
 int currentNode;
 int x, y, z;
 } carNode;

void CarStartLocations(locationNode *, carNode *); /* Function declarations */
void ChangeLights(locationNode *);
int NextNodeFunc(locationNode *, int);

int main(int argc, char* argv[])
{

 FILE *cfPtr = fopen("InnovationsOutput.mel", "a"); /* File output setup */

 int group = 1;
 int frame = 0, translate = 0; /* Variable declarations */
 int vehicle = 1;
 int lightChange = 0;
 int carCount = 0;
 int temp_currentNode = 0;
 int temp_nextNode = 0;

 srand(time(NULL)); /* Seed the random number generator */

 locationNode node[20]; /* Node definitions */
 carNode car[4];

 25

node[0].nextNode_01 = -1; /* location node initialisation */
 node[0].nextNode_02 = -1;
 node[0].nextNode_03 = -1;
 node[0].status = 0;
 node[0].permission = 0;
 node[0].x = 0;
 node[0].y = 0;
 node[0].z = -6;

 node[1].nextNode_01 = 3;
 node[1].nextNode_02 = -1;
 node[1].nextNode_03 = -1;
 node[1].status = 1;
 node[1].permission = 0;
 node[1].x = 2;
 node[1].y = 0;
 node[1].z = -6;

 node[2].nextNode_01 = 0;
 node[2].nextNode_02 = -1;
 node[2].nextNode_03 = -1;
 node[2].status = 0;
 node[2].permission = 0;
 node[2].x = 0;
 node[2].y = 0;
 node[2].z = -2;

 node[3].nextNode_01 = 8;
 node[3].nextNode_02 = 13;
 node[3].nextNode_03 = 12;
 node[3].status = 0;
 node[3].permission = 1;
 node[3].x = 2;
 node[3].y = 0;
 node[3].z = -2;

 node[4].nextNode_01 = 5;
 node[4].nextNode_02 = -1;
 node[4].nextNode_03 = -1;
 node[4].status = 1;
 node[4].permission = 0;
 node[4].x = -6;
 node[4].y = 0;
 node[4].z = 0;

 node[5].nextNode_01 = 2;

 26

 node[5].nextNode_02 = 7;
 node[5].nextNode_03 = 13;
 node[5].status = 0;
 node[5].permission = 1;
 node[5].x = -2;
 node[5].y = 0;
 node[5].z = 0;

 node[6].nextNode_01 = 2;
 node[6].nextNode_02 = -1;
 node[6].nextNode_03 = -1;
 node[6].status = 0;
 node[6].permission = 0;
 node[6].x = 0;
 node[6].y = 0;
 node[6].z = 0;

 node[7].nextNode_01 = 8;
 node[7].nextNode_02 = -1;
 node[7].nextNode_03 = -1;
 node[7].status = 0;
 node[7].permission = 0;
 node[7].x = 2;
 node[7].y = 0;
 node[7].z = 0;

 node[8].nextNode_01 = 9;
 node[8].nextNode_02 = -1;
 node[8].nextNode_03 = -1;
 node[8].status = 0;
 node[8].permission = 0;
 node[8].x = 4;
 node[8].y = 0;
 node[8].z = 0;

 node[9].nextNode_01 = -1;
 node[9].nextNode_02 = -1;
 node[9].nextNode_03 = -1;
 node[9].status = 0;
 node[9].permission = 0;
 node[9].x = 8;
 node[9].y = 0;
 node[9].z = 0;

 node[10].nextNode_01 = -1;
 node[10].nextNode_02 = -1;

 27

 node[10].nextNode_03 = -1;
 node[10].status = 0;
 node[10].permission = 0;
 node[10].x = -6;
 node[10].y = 0;
 node[10].z = 2;

 node[11].nextNode_01 = 10;
 node[11].nextNode_02 = -1;
 node[11].nextNode_03 = -1;
 node[11].status = 0;
 node[11].permission = 0;
 node[11].x = -2;
 node[11].y = 0;
 node[11].z = 2;

 node[12].nextNode_01 = 11;
 node[12].nextNode_02 = -1;
 node[12].nextNode_03 = -1;
 node[12].status = 0;
 node[12].permission = 0;
 node[12].x = 0;
 node[12].y = 0;
 node[12].z = 2;

 node[13].nextNode_01 = 17;
 node[13].nextNode_02 = -1;
 node[13].nextNode_03 = -1;
 node[13].status = 0;
 node[13].permission = 0;
 node[13].x = 2;
 node[13].y = 0;
 node[13].z = 2;

 node[14].nextNode_01 = 17;
 node[14].nextNode_02 = 12;
 node[14].nextNode_03 = 6;
 node[14].status = 0;
 node[14].permission = 1;
 node[14].x = 4;
 node[14].y = 0;
 node[14].z = 2;

 node[15].nextNode_01 = 14;
 node[15].nextNode_02 = -1;
 node[15].nextNode_03 = -1;

 28

 node[15].status = 1;
 node[15].permission = 0;
 node[15].x = 8;
 node[15].y = 0;
 node[15].z = 2;

 node[16].nextNode_01 = 11;
 node[16].nextNode_02 = 6;
 node[16].nextNode_03 = 7;
 node[16].status = 0;
 node[16].permission = 0;
 node[16].x = 0;
 node[16].y = 0;
 node[16].z = 4;

 node[17].nextNode_01 = 19;
 node[17].nextNode_02 = -1;
 node[17].nextNode_03 = -1;
 node[17].status = 0;
 node[17].permission = 0;
 node[17].x = 2;
 node[17].y = 0;
 node[17].z = 4;

 node[18].nextNode_01 = 16;
 node[18].nextNode_02 = -1;
 node[18].nextNode_03 = -1;
 node[18].status = 1;
 node[18].permission = 0;
 node[18].x = 0;
 node[18].y = 0;
 node[18].z = 8;

 node[19].nextNode_01 = -1;
 node[19].nextNode_02 = -1;
 node[19].nextNode_03 = -1;
 node[19].status = 0;
 node[19].permission = 0;
 node[19].x = 2;
 node[19].y = 0;
 node[19].z = 8;

 CarStartLocations(node, car); /* Assign car start locations */

 ChangeLights(node); /* Assign traffic light node permissions */

 29

 for(frame=0; frame<=1000; frame+=50){

/* Increment through frames, 50 at a time */

 fprintf(cfPtr, "currentTime %dpal;\n", frame);

 if(frame == 0){ /* If the current frame is 0 */

for(carCount= 0; carCount<=3; carCount++){ /* Increment through each car */

/* Keyframe car's start position */

fprintf(cfPtr, "setKeyframe -value %d car_%d.translateX;\n", car[carCount].x, carCount);
fprintf(cfPtr, "setKeyframe -value %d car_%d.translateY;\n", car[carCount].y, carCount);
fprintf(cfPtr, "setKeyframe -value %d car_%d.translateZ;\n", car[carCount].z, carCount);

 }
 }

 else

 if(frame >=50){

 lightChange = frame % 200;

/* Check if 200 frames have passed, which would result in lightChange equalling 0 */

 if(lightChange==0)

/* If 200 frames have passed, change traffic light node permission values */

 ChangeLights(node);

 for(carCount= 0; carCount<=3; carCount++){

/* Increment through each car */

temp_currentNode = car[carCount].currentNode; /* Assign temporary current node value */

/* Assign temporary next node value */

temp_nextNode = NextNodeFunc(node, temp_currentNode);

 if(temp_nextNode != -1){

/* If the nextNode is equal to -1, then it is null */

 30

if(node[temp_currentNode].permission == 0 && node[temp_nextNode].status == 0){
 /* if the current location node's permission and status are equal to 0 */

node[temp_currentNode].status = 0;

/* Change the current location node's status to 0 */

car[carCount].currentNode = temp_nextNode;

/* Change car's current location node to the current location node's next node */
 temp_currentNode =

car[carCount].currentNode;

/* Assign temporary current node with new current node value */

car[carCount].x = node[temp_currentNode].x;

/* Assign new x, y, z values to the car node */

car[carCount].y = node[temp_currentNode].y;

car[carCount].z = node[temp_currentNode].z;
node[temp_currentNode].status = 1;

/* Change the current location node's status to 1 */

fprintf(cfPtr, "setKeyframe -value %d car_%d.translateX;\n", car[carCount].x, carCount);
fprintf(cfPtr, "setKeyframe -value %d car_%d.translateY;\n", car[carCount].y, carCount);
fprintf(cfPtr, "setKeyframe -value %d car_%d.translateZ;\n", car[carCount].z, carCount);

 }

 else {

fprintf(cfPtr, "setKeyframe -value %d car_%d.translateX;\n", car[carCount].x, carCount);

/* If the car cannot be moved, keyframe the car's current location */

fprintf(cfPtr, "setKeyframe -value %d car_%d.translateY;\n", car[carCount].y, carCount);
fprintf(cfPtr, "setKeyframe -value %d car_%d.translateZ;\n", car[carCount].z, carCount);

 }

 }

 }
 }

 }

 31

printf("Keyframe generation complete\n\nLoad the InnovationsOutput.mel file into the Maya script
editor\n\n");

 return 0;
}

 void CarStartLocations(locationNode *node, carNode *car)

/* Pre set car start locations */
 {

 car[0].currentNode = 1;
 car[0].x = node[1].x;
 car[0].y = node[1].y;
 car[0].z = node[1].z;

 car[1].currentNode = 4;
 car[1].x = node[4].x;
 car[1].y = node[4].y;
 car[1].z = node[4].z;

 car[2].currentNode = 15;
 car[2].x = node[15].x;
 car[2].y = node[15].y;
 car[2].z = node[15].z;

 car[3].currentNode = 18;
 car[3].x = node[18].x;
 car[3].y = node[18].y;
 car[3].z = node[18].z;

 }

 void ChangeLights(locationNode *node)

/* Change traffic lights */
 {
 if(node[3].permission == 0){
 node[3].permission = 1;
 node[5].permission = 1;
 node[14].permission = 1;
 node[16].permission = 0;
 }

 32

 else
 if(node[16].permission == 0){
 node[3].permission = 1;
 node[5].permission = 1;
 node[14].permission = 0;
 node[16].permission = 1;
 }

 else
 if(node[14].permission == 0){
 node[3].permission = 1;
 node[5].permission = 0;
 node[14].permission = 1;
 node[16].permission = 1;
 }

 else{
 node[3].permission = 0;
 node[5].permission = 1;
 node[14].permission = 1;
 node[16].permission = 1;
 }

}

 int NextNodeFunc(locationNode *node, int temp_currentNode)

/* Random next location node choice */
 {
 int choice;

 if(node[temp_currentNode].nextNode_02 == -1)

 return node[temp_currentNode].nextNode_01;

 else
 {
 choice = 1 + (rand() % 3);

 switch (choice){

 case 1:

 return node[temp_currentNode].nextNode_03;

 case 2:

 return node[temp_currentNode].nextNode_02;

 case 3:

 return node[temp_currentNode].nextNode_01;

 }
 }

}

 33

CD Contents

PDF version of this report

Word version of this report

Readme instructions

Maya scene

Executable version of application

Source code

CD Instructions

1 Copy the Traffic_App folder to the computers hard disk.

2 Execute the application (Traffic_App.exe), this will create a

MEL script.

3 Open the Maya scene (FourWayJunction.mb).

NOTE: The cars are represented by polygon planes with

car symbol texture. This texture may not load into the

scene. The texture can be reloaded through the Hypershade.

The texture must be loaded into lambert 5. The texture can

be located in the Symbols folder on the CD.

4 Load the InnovationsOutput.mel file into the script editor.

5 Press return.

6 Press play, the car symbols should move through the

junction.

 34

References

1 Boids (Flocks, herds and schools: A distributed behavioural

model), Craig Reynolds, 1987, http://red3d.com/cwr/boids/

2 Steering Behaviours for Autonomous Characters, Craig Reynolds,

1999, http://red3d.com/cwr/steer/gdc99/

3 AI Madness: Using AI to Bring Open-City Racing to Life, Joe

Adzima, Gamasutra 2001,

http://www.gamasutra.com/features/20010124/adzima_pfv.htm

Figure 1. Midtown Madness 2, Angel Studios, Microsoft,

http://www.microsoft.com/games/midtown2/multimedia.asp

Figure 2. Grand Theft Auto 3, Rockstar Games,

http://www.rockstargames.com/grandtheftauto3/flash/main.html

 35

http://red3d.com/cwr/boids/
http://red3d.com/cwr/steer/gdc99/
http://www.gamasutra.com/features/20010124/adzima_pfv.htm
http://www.microsoft.com/games/midtown2/multimedia.asp
http://www.rockstargames.com/grandtheftauto3/flash/main.html

Bibliography

AI Madness: Using AI to Bring Open-City Racing to Life, Joe Adzima,

Gamasutra 2001,

http://www.gamasutra.com/features/20010124/adzima_pfv.htm

Boids (Flocks, herds and schools: A distributed behavioural model),

Craig Reynolds, 1987, http://red3d.com/cwr/boids/

GamaSutra.com, http://www.gamasutra.com/

Generation of ambient traffic for real-time driving simulation, Esmail

Bonarkdarian, James Cremer, Joseph Kearney, Pete Willemsen, 1998,

http://citeseer.nj.nec.com/cache/papers/cs/602/http:zSzzSzwww.cs.uiowa

.eduzSz~cremerzSzpaperszSzimage98.pdf/bonakdarian98generation.pdf

Steering Behaviours for Autonomous Characters, Craig Reynolds, 1999,

http://red3d.com/cwr/steer/gdc99/

 36

http://www.gamasutra.com/features/20010124/adzima_pfv.htm
http://red3d.com/cwr/boids/
http://www.gamasutra.com/
http://citeseer.nj.nec.com/cache/papers/cs/602/http:zSzzSzwww.cs.uiowa.eduzSz~cremerzSzpaperszSzimage98.pdf/bonakdarian98generation.pdf
http://citeseer.nj.nec.com/cache/papers/cs/602/http:zSzzSzwww.cs.uiowa.eduzSz~cremerzSzpaperszSzimage98.pdf/bonakdarian98generation.pdf
http://red3d.com/cwr/steer/gdc99/

 37

Acknowledgements

Thanks to Stephen Bell and Phill Allen.

