[Type text]

	Geometric Algebra
	

	
	2007

	
	Innovations Report
Oleg Troy

	[Geometric Algebra]

	 Geometric algebra is a whole new branch of mathematics. It completely redefines everything we have learnt in school and university about 3-dimension and n-dimensional space as it is completely coordinate free. It incorporates many different elements of other branches of mathematics. It provides us with many powerful tools to solve many of the geometric problems computer graphic specialists encounter today.

Contents

3Vectors:

4Geometric Product

5Bivectors

6Trivectors

6Scalars

6Bases, Grades and Blades

8Multivector

8Geometric Product

10Inner Product / Contraction

11Outer Product

12Dual

12Inverse

13Reverse

13Reflection and Rotations

14Hierarchical Transformations

14OpenGL and C++ Implementation

17Evaluation

17Conclusion

17Acknowledgments and Disclaimer:

18Bibliography:

Introduction:

This report covers two aspects of the innovation project, with the first section consisting of a basic outline of the mathematic principles governing geometric algebra and the second describing how the theory of geometric algebra was implemented into an OpenGL program. o introduce the two key concepts the multivector and the geometric product. Most of the other sub-segments aim to supplement or enhance these two primary concepts with the second section.

The report begins with a brief introduction into regular linear algebra and continues to draw comparisons throughout the report. The mathematical section of this report presents only the axioms and rules of geometric algebra with aid of a small number of mathematical proofs.
The report will begin with a short introduction into regular linear algebra and draw comparisons throughout the report. The mathematical section of this report only covers axiom and rules of geometric algebra with a small amount of mathematical proofs.
Geometric Algebra

Vectors:
From a computer animator’s point of view to visualise the difference of geometric algebra, we can take a look at the linear expression of entity in 3-dimensions such as points, lines, planes and primitive objects. These identities are normally expressed in terms of height, length and width or more commonly the x, y and z-coordinate. As an example to represent a point in space graphically, a Cartesian coordinate system denotes the position of the point from the origin by any real number and the symbol x, y, or z. DIAGRAM
From this we can note that in linear algebra each component x, y and z expresses only 1-dimension but combined expresses more, we can also see that the real number signifies the magnitude of the distance from the origin. We refer to each one of these 1-dimensional identities as Vectors.
The standard notation for CL is{e1,e2,e3}

The following standard axioms and rules apply to standard linear vectors [image: image2.png], v, v1, v2 ,v3 and scalar α and β [1]:
Vector Addition

[image: image4.png]:
[image: image5.png]
[image: image7.png]
[image: image8.png]
Associative Law:
[image: image9.png]
Neutral and Inverse element:
[image: image10.png]
[image: image11.png]
Scalar Vector Product
Multiplication Identities:
[image: image12.png]
[image: image13.png]
[image: image14.png]
Distributive Law:
[image: image15.png]
Associative Law:
[image: image16.png]
Neutral and Inverse element:
[image: image17.png]
[image: image18.png]
Commutative Law:
[image: image19.png]
Magnitude and Direction assuming that v is a non-zero vector:
[image: image20.png]
[image: image21.png]
Collinearity assuming that v1 and v2 are non-zero vectors:
[image: image22.png]
Geometric Product
I will swiftly describe the geometric product in the expanded form by means of inner and outer product with vectors at this point, but will provide a more detailed description in terms of multivectors later. The geometric product is the most important product of geometric algebra, it provides us with the ability to do all kinds of operations such as reflection, translation and rotation. Also we can use the geometric product to derive other less powerful products but they are still extremely useful.
The Geometric product for standard vectors [image: image24.png], [image: image26.png] and [image: image28.png] are defined by these set of laws and axioms[2][3][4];
Right Distributive Law:
[image: image29.png]
Left Distributive Law:
[image: image30.png]
 Associative Law:
[image: image31.png]
Geometric Product:
[image: image32.png]
Inner Product:
[image: image33.png]
Outer Product:

[image: image34.png]
Non – Commutative:
[image: image35.png]
The geometric product in terms of vectors [image: image37.png] can be seen as the sum of the inner and outer product.

Bivectors
Geometric outer product spawns a new vector entity called a Bivector. The bivector is a representation of a directed area, in other words it can geometrically be illustrated as an area of either a parallelogram or circle, with a clockwise or anticlockwise direction. But a property to note is that bivectors do not actually have shape only the area[2][4]. Another way to think about a bivector is to take any point of the x, y and z-coordinate system and view it as the distance from the yz-plane, xz-plane, and xy-plane respectively. These arbitrary planes are infinite in size but in terms of bivectors they have magnitude. DIAGRAM
From the figure above all these planes are 2-dimensional entities but they each define different sub-space within any two or higher dimensional space, but within a 3 dimension space naturally you derive three of these bivectors using the outer product. Hence this is where we introduce the outer product to exhibit the properties of a bivector. The wedge symbol “^” is used to express this geometric operation. The geometric outer product produces these bivectors by extending one vector along another and for standard vectors [image: image39.png], [image: image41.png] and [image: image43.png] and scalar λ these set of laws and axioms apply[2][3][4];
Outer Product:

[image: image44.png]
Neutral element:

[image: image45.png]
[image: image46.png]
Associative scalar Multiplication:

[image: image47.png]
Commutative scalar Multiplication:

[image: image48.png]
Distribution over vector addition:

[image: image49.png]
A vector can be shown as a line segment beginning at the origin and ending at a point in space, so you could say that a vector is the description of a direction and length of a line, in the same manner you could describe a bivector as the direction and area of plane.
Trivectors
As explained before the outer product of two vectors form a bivector, we use the same principle and apply it to a bivector and a vector to generate a Trivectors. Like bivectors, trivectors represent a clockwise or anticlockwise directed volume such as a volume of a sphere or a cube but remember this volume is not a true physical depiction of a trivector but an abstract interpretation of one. Since we are concerned with only 3-dimensional space you can only naturally derive one of these trivector from 3d space.
Scalars
In geometric algebra a notion that is slightly unintuitive is the axiom that a scalar signifies the 0-dimension subspace, in geometric terms it has a magnitude and an orientation but no direction. Another way to view scalars is like points with masses and therefore they are incorporated into geometric algebraic expression. Using the outer and standard product these rules apply to vector [image: image51.png] and scalar λ and β[3];
[image: image52.png]
[image: image53.png]
Bases, Grades and Blades
I have briefly explained 0-dimension scalars, 1-demension vectors, 2-dimension bivector and 3-dimension trivectors each representing a different subspace. A major advantage of geometric algebra is that all the arithmetic can apply in any dimension be it 0 or 10 dimensions, because of this more general terms are used to express any arbitrary base and dimension. The typical convention to denote the bases is the character e with a numeric subscribe. For example if we were to take base vectors from the Cartesian coordinate system x, y and z in geometric algebra they would be e1, e2 and e3 respectively.[3]
	Scalar(0-Blade)
	Vectors(1-Blade)
	Bivectors(2-Blades)
	Trivectors(3-Blades)

	[image: image54.png]
	[image: image55.png]
	[image: image56.png]
	[image: image57.png]
	[image: image58.png]
	[image: image59.png]
	[image: image60.png]
	[image: image61.png]

	[image: image62.png]
	[image: image63.png]
	[image: image64.png]
	[image: image65.png]
	[image: image66.png]
	[image: image67.png]
	[image: image68.png]
	[image: image69.png]

	[image: image70.png]
	[image: image71.png]
	[image: image72.png]
	[image: image73.png]
	[image: image74.png]
	[image: image75.png]
	[image: image76.png]
	[image: image77.png]

There are two standard ways to express bivectors and trivectors, both are shown above with the first elements in term of the outer product and the second is just a shorthand method, both mean the exact same thing. Another item to be aware of, in some implementations the order is changed to e12, e23 and e31 for bivectors where e31 = -e13. This is for a more cyclic order but this makes no real difference in general terms as long as the implementation is consistent throughout all procedures.
Because the geometric products work in any dimension, the term k-blades or k-vector[4] are used where k is referred to as the grade of the blade to indicate the dimensionality of that corresponding vector. Therefore as can be gathered from the figure above scalars have a grade of 0, vectors a grade of 1,bivectors a grade of 2 and trivector a grade of 3 but they do not stop there, in higher dimension space there can be grades of 4 or even higher. To calculate how many basis blade(s) of any grade they are in any dimensions, we use the binomial coefficient were n is the dimension and k is the grade[3].
Binomial coefficient:
[image: image78.png]
If we were to use Pascal's triangle, which is a geometric arrangement of the binomial coefficients in a triangle shape.
[image: image79.png]
[image: image80.png]
[image: image81.png]
[image: image82.png]
[image: image83.png]
[image: image84.png]
From Pascal’s triangle we can easily see that for example in 3-dimension there is 1 scalar, 3 vector, 3 bivector and 1 trivector and in total 8 elements. To calculate the total amount of elements this simple equation can be use.
Total basis element formula:
[image: image86.png]= total elements;
Multivector
Multivector is the linear addition of a set of all the basis blades. Another way to see the multivector is as the by-product of the geometric product. For example the geometric algebra notation of a 3-dimension space multivector is.[3]

[image: image87.png]

 Scalar Vectors
 Bivectors

 Trivector
The problem with multivectors is that they cannot be geometrically visualised as opposed to vectors, bivectors and trivectors in 2 or 3-dimension space. But they do considerably extend the algebraic techniques in solving different kinds of geometrical problems. One such example is the powerful function is you are able to divide a multivector by another multivector although it has to be said this does not hold in all cases.
Now just imagine if you were asked to shorten the expression of a point in 3d space to only one value, you could not because as an example the x-coordinate is different to the y-coordinate, they represent different dimensions and this is why each component is expressed separately in a linear algebraic vector. The exact same principles apply to any multivector. It is like adding apples and pears together and asking what is the new total of apples, the number stays the same because they are fundamentally different otherwise the create something else which would not be the same as the original apples. So in essence multivectors have combinations of grades as they are linear combination of blades.
Geometric Products
Geometric Product
I have briefly described the geometric product in the expanded form[4] for vector spaces in term of inner and outer product[3].
Geometric Product:

[image: image88.png]
But the geometric product general form can operate on any blades and multivectors, for arbitrary multivectors[image: image90.png], [image: image92.png] and [image: image94.png] and scalar λ these set of laws and axioms apply[3];
Associative Law:

[image: image95.png]
Commutative scalar multiplication:
[image: image96.png]
Distribution over addition:

[image: image97.png]
Non – Commutative:
[image: image98.png]
To understand how to implement the geometric product for multivectors, I will cover in basis component the simple rules for geometric product of 2-dimensional Euclidean space with orthonormal basis ex and ey and after demonstrate in terms of multivectors[2][3].
[image: image99.png]
[image: image101.png] + [image: image103.png]
[image: image105.png] + [image: image107.png]
The geometric inner product which is similar to the dot product equals zero when the vectors are perpendicular
[image: image109.png]
Rule 1.In the next section I have enclosed a set of rules that apply to basis blades with higher grades. As mentioned before you can express bivector, trivector and higher–grade blades in shorthand because as described above the dot product between two perpendicular vectors the result equals zero.

As an example for a higher grade blade we can write it in three different forms;
e13485 = e1 ^ e3 ^ e4 ^ e8 ^ e5 = e1e3e4e8e5
Rule 2. Because the outer product is anti-commutative this allows us to swap the order of two connecting basis vectors if we reverse the sign of the blade. This means that we can write:
e123 = -e213 = e231 = -e321
Rule 3. Whenever two of the same basis vectors appear next to each other, they cancel themselves out, because as described above the outer product of a basis vector with itself equals one.

Example:
[image: image110.png]
[image: image112.png]133244[image: image114.png]12
Using these rules we can apply to all blades regardless of their grade. Below is the multiplication table for all permutation of geometric product for an 3-dimension multivectors.
	Product
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	s
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	e1
	e1
	s
	e12
	e13
	e2
	e3
	e123
	e23

	e2
	e2
	(-e12)
	S
	e23
	(-e1)
	(-e123)
	e3
	(-e13)

	e3
	e3
	(-e13)
	(-e23)
	s
	e123
	(-e1)
	(-e2)
	e12

	e12
	e12
	(-e2)
	e1
	e123
	(-s)
	(-e23)
	e13
	(-e3)

	e13
	e13
	(-e3)
	(-e123)
	e1
	e23
	(-s)
	(-e12)
	e2

	e23
	e23
	e123
	(-e3)
	e2
	(-e13)
	e12
	(-s)
	(-e1)

	e123
	e123
	e23
	(-e13)
	e12
	(-e3)
	e2
	(-e1)
	(-s)

Inner Product / Contraction
Depending on the purpose of the operation there are many different inner products catered for different application. The two most useful inner products in terms of computation geometry are the Hestenes inner product and the contraction inner products. [2] The standard symbol “┘” denotes the contraction inner product.

For an arbitrary multivectors[image: image116.png], [image: image118.png] and [image: image120.png] and scalars [image: image122.png] and β these set of laws and axioms apply[3];
Scalar Inner Product:

[image: image123.png]
Vector and scalar:

[image: image124.png]
Scalar and Vector:

[image: image125.png]
Vectors:
[image: image126.png]
Vectors and multivectors

[image: image127.png]
Distribution law
[image: image128.png]
When you apply the inner product onto two vectors, the result is exactly the same as a dot product in linear algebra. But when you take higher grade blades and apply the inner product the result is the reduction of the grade of the blade. I have included two multiplication tables to show the differences in the two products.
The left contraction inner product:
	Cont.
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	s
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	e1
	0
	s
	0
	0
	e2
	e3
	0
	e23

	e2
	0
	0
	s
	0
	(-e1)
	0
	e3
	(-e13)

	e3
	0
	0
	0
	s
	0
	(-e1)
	(-e2)
	e12

	e12
	0
	0
	0
	0
	(-s)
	0
	0
	(-e3)

	e13
	0
	0
	0
	0
	0
	(-s)
	0
	e2

	e23
	0
	0
	0
	0
	0
	0
	(-s)
	(-e1)

	e123
	0
	0
	0
	0
	0
	0
	0
	(-s)

The Hestenes inner product:

	Hest.
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	s
	0
	0
	0
	0
	0
	0
	0
	0

	e1
	0
	s
	0
	0
	e2
	e3
	0
	e23

	e2
	0
	0
	s
	0
	(-e1)
	0
	e3
	(-e13)

	e3
	0
	0
	0
	s
	0
	(-e1)
	(-e2)
	e12

	e12
	0
	(-e2)
	e1
	0
	(-s)
	0
	0
	(-e3)

	e13
	0
	(-e3)
	0
	e1
	0
	(-s)
	0
	e2

	e23
	0
	0
	(-e3)
	e2
	0
	0
	(-s)
	(-e1)

	e123
	0
	e23
	(-e13)
	e12
	(-e3)
	e2
	(-e1)
	(-s)

Outer Product

When we defined the bivector we described it in terms of the outer product. The outer product is very similar to the cross product except it applies to any dimension. A good way to visualise the outer product is, as an extension of two blades one from the end of another thus increasing the grade. The outer products’ multiplication table shows how to derive in component form the outer product for 3-dimenional multivectors.

	Outer
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	s
	s
	e1
	e2
	e3
	e12
	e13
	e23
	e123

	e1
	e1
	0
	e12
	e13
	0
	0
	e123
	0

	e2
	e2
	(-e12)
	0
	e23
	0
	(-e123)
	0
	0

	e3
	e3
	(-e13)
	(-e23)
	0
	e123
	0
	0
	0

	e12
	e12
	0
	0
	e123
	0
	(-e23)
	e13
	0

	e13
	e13
	0
	(-e123)
	0
	e23
	0
	(-e12)
	0

	e23
	e23
	e123
	0
	0
	(-e13)
	e12
	0
	0

	e123
	e123
	0
	0
	0
	0
	0
	0
	0

Geometry Functions

Dual

The dual is a function that derives a normal from a bivector. In linear algebra the cross product obtains the normal vector for a plane that the two vectors span. But in geometric algebra the outer-product returns a bivector which is the representation of a plane in geometric terms. Therefore the dual is used to calculate the normal for a bivector. This is a straightforward process, the dual uses the “*” symbol to denote this operation. To return a dual of a multivector [image: image130.png] we use an element called a pseudoscalar, which is the highest grade blade within a multivector, for example the pseudoscalar for a 3-dimensional multivector is e123. Than all we have to do is the geometric product with the pseudoscalar for each basis of the multivector.

As an example;
[image: image131.png]
Inverse

A powerful functionality of geometric multivectors is that, they are invertible. This allows us to divide multivectors by other multivectors. Unfortunately calculating the inverse of a standard multivector is not trivial. It is, as complicated as deriving the inverse of a regular matrix. [2] But fortunately there is a special subset of multivectors that make calculating the inverse a simple process. They are called versors, multivectors are said to be versors when they only consist of elements of the same grade. A multivector [image: image133.png] is a versors when it has these properties;
[image: image134.png]
[image: image135.png]
[image: image136.png]
[image: image137.png]

[image: image139.png]
And all other elements are zero for each instance. So when a multivector meets these requirements, you are able to calculate the inverse of a multivector.

[image: image140.png]
 Where [image: image142.png] is the blade of the basis vectors.
Reverse

Using the symbol “┼“signifies the reverse operation. To reverse a multivector all the basis indices are flipped. As an example for arbitrary multivector[image: image144.png];
[image: image146.png] [image: image148.png]
In the above example there is no change this is due to the fact that there is only a single index for each vector.
[image: image150.png] [image: image152.png]
As previously stated the outer product is non- commutative so when you reverse the indices the sign changes.
Reflection and Rotations
Geometric algebra handles reflection and rotation of multivectors of any grade through a series of linear combinations of the geometric product sometimes referred to as the “sandwiching product”.[5] To construction a reflection of a standard vector about an arbitrary axis, the sandwiching product is assembled as follows for vectors [image: image154.png],[image: image156.png] and [image: image158.png].
Reflection:
[image: image159.png]
In geometric algebra to generate a rotation, we apply two reflections in succession. One in the plane perpendicular to a unit vector [image: image161.png] and the next in the plane perpendicular to a unit vector [image: image163.png].[6] So it can be established that we can symbolize a rotation by a quantity commonly referred to, as a rotor which is given by;
Rotor:
[image: image164.png]
A rotor in 3-dimension is a multivector consisting of only a scalar plus a bivector and can be derived from various forms as listed below; [6]

[image: image165.png]
The rotor holds a collection of values that provide us with a rotation of θ radians about an axis parallel to the unit vector a. Rotors represents a rotation about the normal of a plane defined by a bivector.
A3-dimensional rotation of a vector about the normal of a bivector:
[image: image166.png]
Implementation

Hierarchical Transformations

In geometry algebra it is relatively easy to formulate multivectors that perform hierarchical transformations. Again we use the geometric product to calculate this, by multiplying the results with each other. The following example is the same as the implementation in the OpenGL program.
1. [image: image168.png]
2. [image: image170.png]
3. [image: image172.png]
4. [image: image174.png]
Where [image: image176.png] is the new location of an object and [image: image178.png] an arbitrary translation.
OpenGL and C++ Implementation
Two versions for Microsoft Windows and Linux have been complied. The source code consists of four libraries with the majority of the geometric math library contained in cga.cpp and cga.h.
cga.h/cga.cpp

Cga library holds the declarations of the multivector and the entire range of products and functions that manipulate the multivector.
The list of available products and their arguments is as follows:
(mv is shorthand for the class declaration of a multivector)

1. Geometry product:
mv gp(mv, mv); or the operator *
2. Outer product:
mv op(mv, mv); or the operator ^
3. Inner product:
mv ip(mv, mv);
4. Left contraction product:
mv lcip(mv,mv);
5. Scalar multiplication and divisions:
Operators * and / respectively
The list of available functions and their arguments is as follows:

6. Reverse

mv reverse (mv);

7. Dual

mv dual (mv);

8. Conjugate

mv conjugate (mv);
9. Inverse

mv inverse (mv);

10. Spinor

mv reverse (float, mv);
11. Rotate

mv rotate (float, mv, mv);
12. Translate

mv translate (mv, mv, mv);
vector.h/vector.cpp
The vector library is a primitive data class of the linear algebra vector with only the extra ability to transform into a multivector and back, this is employed in order to convert data from geometric expressions into terms that can integrate with OpenGL.

The two most important functions are;

To convert a multivector into a standard vector:
void convert(Multivector);

To convert a vector into a multivector:
Multivector revert(void);

procedure.h/procedure.cpp
The procedure file contains the list of function and commands that the program and OpenGL should carry out in succession. It also includes the mechanism to perform hierarchical transformations.

object.h/objecte.cpp
The object file holds a small inventory of OpenGL display list and routines to draw various polygonal objects in OpenGL. This was incorporated so that I could easily debug problems real-time and have instance feedback.
display.cpp

The display file is the main body of the program. It was created using Rob Batemans example as a template. It holds all the instruction to initiate the OpenGL interface and procedures.

innov.exe
Is the program executable file for Microsoft Windows.
example

Is the program executable file for linux.

Makefile
Makefile holds the set of instruction for the C++ compiler on a Linux system

Makefile.win
Makefile.win stores the set of instruction for the C++ compiler on a win32 system.
In run-time there are three command that user may use.
These consist of

To exit the program press:

Q or q
To display a 10x10 grid press:

G or g

To pause the program press:

R or r
Summary
Evaluation

Throughout this assignment over ninthly percent of the time was spent trying to grasp geometric algebra. It has been believed that it takes at least a year to understand the major concepts. It is a completely new way to interpret n-dimensional space and so has been a painful and slow process to understand and to implement. If I knew what I know now, I would have attempted to implement geometric algebra in more advance and interesting areas of computer graphics. But building this simple and primitive kinematics system was a perfect platform to learn about geometric algebra and demonstrate its abilities.
Conclusion
In conclusion this project was the best attempt at creating something relatively new and innovative. This projects’ goal was to implement a whole new branch of a mathematical library that could demonstrate the capabilities of geometric algebra using any programming language and demonstrate those results visually. The main target was hierarchical transformation in particular rotations. Based on those goals my project was a total and utter success.
Acknowledgments and Disclaimer:
Before and during the programming stage a lot of research was carried out in tandem with Timothy Chauncey. Although we had different aims we covered a lot more ground in terms of understanding and implementing geometric algebra. Many fundamental principles overlapped for both our projects so it seemed natural to us to help each other to develop our libraries. This should not be construed as a duplication of each other’s code, any similarities in code is purely coincidentally and what might seem as carbon copies I would argue is probably an intuitively solution and most individuals would derive the same results. In fact I would like to acknowledge Tim’s assistance throughout this project, it would not be the success it is without his help.
For more information please refer to bibliography section as those paper provide a more comprehension explanation.
Bibliography:
[1]Comninos,P., 2006 Mathematical and Computer Techniques for Computer Graphics. USA: Springer
[2]Suter, J March 12, 2003 Geometric Algebra Primer

http://www.jaapsuter.com

[3]Hestenes, D. 7,2005 Primer on Geometric Algebra for introductory mathematics and physics

[4]Leo Dorst, Stephen Mann, Geometric Algebra: a computational

framework for geometrical applications (part 1: algebra),

http://www.science.uva.nl/˜leo/clifford/dorst-mann-I.pdf, published in

IEEE Computer Graphics and Applications May/June 2002
[5]Leo Dorst, Stephen Mann, Geometric Algebra: a computational

framework for geometrical applications (part 2: applications),

http://www.science.uva.nl/˜leo/clifford/dorst-mann-II.pdf, published in

IEEE Computer Graphics and Applications July/August 2002
[6]Joan Lasenby, Sahan Gamage Chris Doranand Maurice RingerGeometric 2001 Algebra: Application Studies SIGGRAPH 2001, Los Angeles – Inverse kinematics and dynamics

http://www-sigproc.eng.cam.ac.uk/vision

http://www.mrao.cam.ac.uk/ clifford

17 | Page

