

P
a

g
e
1

VOLUMETRIC VIDEO

Innovations Report 2008

Luke Harris

ABSTRACT

By stacking frames from an image sequence one behind the other, to form a volume of pixels (or voxels), new

approaches can be taken in how this data is viewed and manipulated. Viewing is no longer restricted to a 2

dimensional snapshot at specific moments but can mix spatial and temporal information to form a new,

sometimes remarkable, image or sequence. Likewise, standard image processes, are no longer considered as

ordinary 2D operations, but as 3D operations which act on the whole volume.

P
a

g
e
2

INTRODUCTION

There seems to be a lack of widely available tools that provide the user with the power to extract coherent

data from video in the way described in this report. Even sophisticated compositing software is largely

insufficient in offering this type of treatment, instead preferencing a ‘frames over time’ representation. This of

course makes perfect sense for the vast majority of work performed in editing and compositing packages,

however some additional power can be gained by treating the video as a volume, as will be shown here.

From a visual effects perspective, this method solves some problems that are inherent in the conventional

format for viewing video. For example, a video recording from a camera panning 360° around a room contains

all the information to construct a perfect panoramic image. However obtaining this panoramic image is

cumbersome – standard video tools are not designed to make extracting that kind of information easy. This

project presents a more generalized approach for dealing with video data.

I use the terms z-axis (z-depth) and t-axis (time) interchangeably to mean successive frames of video.

AIMS & OBJECTIVES

My aim was to produce a visualization of a regular piece of video/image sequence so that it can be seen and

manipulated in unconventional ways. The software should have a practical use as well as be able to make

aesthetically pleasing images.

The user would need to be able to specify a source clip to perform the operations on. The operations should

be easy to understand and responsive to user interaction. There should be the freedom to experiment inside

the program in order to achieve new looks. Finally, it should be possible to output the resulting images for

other uses.

I would like to use the project to develop my programming and to look at areas such as GUI creation and basic

volume rendering techniques. I’d also like to explore some of the possibilities offered by 3d slicing.

P
a

g
e
3

RELATED WORK

There have been several examples of related work, ranging from old photographs to experimental films, music

videos, software applications or plug-ins and art installations. Some are practical, others are purely aesthetic. I

shall describe some of the more influential ones for me. What I find appealing is a visually interesting image

having a practical application. I also discovered a small subculture of slit-scan enthusiasts on the internet on

photo/video websites like flickr and vimeo. The quality of their images encouraged me to pursue the project.

SLIT SCAN PHOTOGRAPHY

This is a well established photographic technique

whereby a camera with a focal plane shutter

traverses the film gate relatively slowly with a narrow

opening slit. The film is exposed progressively from

one side to the other over a period of time. Thus, the

left hand side of the image may have recorded the

scene from an earlier time than the right hand side.

Figure 1 Shows this effect with the shutter moving

from top to bottom.

The effect may have been more noticeable with older

cameras which were not able to accelerate and

decelerate the shutter curtains as rapidly as newer

cameras
i

The same effect can be reproduced with my video

cube by simple rotating the slice plane around X or Y.

Seeing these types of images in motion brings a whole

new dimension to them which the still photographers

were not able to enjoy.

Figure 1. A couple spinning on a turntable taken with a vertically

moving shutter. Robert Doisneau

INTERACTIVE VIDEO CUBISM

Slicing a video cube based on an arbitrary slice plane or sphere, not restricted to axis aligned viewing is

introduced by Fels and Mase 1999ii. The slicer can be manipulated in real time and operate on streaming

video, providing an opportunity to interactively explore the video cube. I wished my implementation to be

similar to this. This is the interactive, moving equivalent of slit-scan photography.

“ The video data buffer is formed from frames of video data. The virtual cube is the representation of the video

data in virtual coordinates. Finally, the cut surface cuts through the virtual video cube which in turn displays the

corresponding video data... The main purpose is to explore some of the aesthetics of looking at video data from

a variety of perspectives.”
iii

One distinction between our implementations is that they texture-map the surfaces of the cube with the

corresponding video images whereas I ray-march through the volume which permits image transparency to

produce lofted volumes thus reinforcing the 3D volumetric approach.

P
a

g
e
4

COMPOSITING TOOLS

Adobe After Effects and Houdini’s compositor Halo (and likely many

more) support a technique called “Time Displacement Mapping” out

of the box or available through plugins such as GenArts’ Time

Displace. They work using a black and white map the same size as

the video frame whereby black looks up the pixel at frame t and

white looks up at t+maxdisplacement. Often they are used

with a black/white gradient which can be recreated in my program

by using a diagonal slice, however they also offer the freedom of

using arbitrary values (for example a noisy/wavy pattern) in the

lookup map which cannot be done with the bilinear patch I use. The

limitation with this technique is it is really only remapping the t

coordinate, leaving x and y the same. Taking a ZY slice for example

would not be possible. Figure 2 (top) shows the distortion resulting

from this time-remapping.

A Shake macro TxTransform
iv
 written by Jean First exsits that will

transpose the X or Y axis with T. The resulting image can be of use to

compositors as it allows their filters to be time sensitive etc. A good

example is temporal median filtering
v
 which can work as a grain

suppression technique.

Figure 2 After Effects 2 second time

displacement using black/white grad
vi
 (below)

TxTransform

Tx-Transform is also the name of a film and software by Martin Reinhart
vii

. It simply swaps the t axis with either

the x or y axes and has been used in several of his films since 1992. However I do not believe the software is

publically available.

STYLIZED VIDEO CUBES

Perhaps the most interesting demonstration of video cubes has been undertaken by Klein et al
viii

 2002. By

creating ‘rendering solids’ (see Figure 3), which exist over time as well as spatially then interesting NPR effects

can be made that do not suffer from undesirable temporal aliasing artifacts evident in individual (per-frame)

processing. This is achieved by first performing an optical flow on the video to determine the directions that all

the pixels are moving in. This provides greater temporal resolution than the 30fps that the original sequences

were captured in. The rendering solids can take the form of 3 dimensional shards, or ‘worms’ which grow

along curves along the t axis or importance based KD-tree. Each can be manipulated interactively by the user

e.g. offset in time.

Figure 3 3D Rendering solids used to create temporally coherent NPR effects. Worm, KD-Tree and Shard methods respectively
ix

P
a

g
e
5

LIGHT FIELD PHOTOGRAPHY

Shortly before the end of the project I discovered an expanding area in computer graphics and photography –

light field photography. By utilizing techniques such as placing a microlens array behind the main lens of a

camera (a plenoptic camera) it’s possible to capture more of the light ray information present in the scene.

“Plenoptic Video Geometry is the study of the space of light rays as observed by a moving imaging sensor. The

space of light rays is the most complete representation of visual information possible.”
x

Photographic depth of field and exposure become decoupled and can be changed after the fact by selecting

the appropriate pixels from the plenoptic image
xi
. Similarly, small differences in parallax caused by the many

spatially offset lenses can be used to construct 3D data of the scene. A related project, The Stanford CityBlock

Project involved taking video of a street from a truck moving perpendicularly to the camera. The video can be

stitched together to form a single orthographic (or multi-perspective) image of the street. This could be

straightforwardly reproduced with the software.

DYNAMIC MOSAICS

Rav-Acha et al. present the idea of Time Fronts, and the

creation of dynamic panoramas from panned video footage,

provided the footage is comprised of primarily vertical

motion e.g. a waterfall.

“In this time flow pattern [Figure 4], the initial time front is

passing through the right side of each input frame, where

regions are captured as they first enter the camera’s field of

view. Thus, the first time slice is a panoramic image capturing

the earliest appearance of each point in the scene. The final

time front is passing through the left side of each frame,

where regions are captured just before leaving the field of

view. This time slice shows the last appearance of each point

in the scene.”
 xii

Figure 4 This time flow pattern assumes a camera

panning from left to right and will generate a dynamic

panoramic video of the scene captured between the dark

black lines. These are the time fronts (left and right

edges of the frame in this case). Diagram: A. Rav-Acha

PRODUCTION

I had been very impressed with some of the work that had been developed in Processing
xiii

 and had initially

decided to develop in that. It was a good experience in getting to grips with 3D data structures and cameras.

However as the project developed some of my ideas would have been difficult to implement properly (ie a

user interface) so I decided to switch back C++. Figure 5 and Figure 6 show some 3d particles rendered in

OpenGL using Processing.

Figure 5. A noisy volumetric cube written in Processing

Ian Stephenson had developed the NCCAPixmap library which is a cross platform GUI and image handling

library which I was going to use and extend to handle voxmaps. In the end however, I eventually settled on

wxWidgets
xiv

, another cross platform windowing library due to its extensive documentation

handling format, wxImage.

Figure 7. Slice 5 of a 10 voxel deep 3D blurred animation

I wanted two viewports in the interface. One is a 3d viewport which shows the block of voxels in space. The

other viewport shows the extracted data by the intersecting screen (the slicer). In between

positioning the slicer.

The image data is stored as a simple

functions in the form getVoxel(x, y, z)

There were unexpected crashes when loading long or high resolution images.

255) for red, green, blue and alpha. I was tempted to store them as floats instead to support higher bit

images and higher quality filtering operations

used extensively in the program (which uses unsigned chars) I followed suit.

To position the voxmap in space a world space position vector is subtracted in the

setVoxel() methods to convert them to object space lookups. See the Appendix

A noisy volumetric cube written in Processing Figure 6. fBm volume noise slice in Processing

Ian Stephenson had developed the NCCAPixmap library which is a cross platform GUI and image handling

library which I was going to use and extend to handle voxmaps. In the end however, I eventually settled on

, another cross platform windowing library due to its extensive documentation

3D blurred animation

Figure 7 shows my first proof of concept image

wxWidgets. At this point the user could

of images which would get stored in a voxel map

a simple box blurring effect. It is a 3D blur

motion blurring as well as spatial blurring. It is based on a

2D algorithm by Jim Scott
xv

 which I expanded into 3

idea of 3d image processes was something I wanted to

enforce as much as possible in an attempt to avoid treating

the data as frames.

This algorithm was later rewritten to use 3D convolution

kernels, which were more difficult to create but allow the

implementation of other filter effects e.g. find edges more

easily.

I wanted two viewports in the interface. One is a 3d viewport which shows the block of voxels in space. The

other viewport shows the extracted data by the intersecting screen (the slicer). In between

simple one dimensional array of voxels which is accessed using accessor

getVoxel(x, y, z). I think storing them in this format can sometimes b

There were unexpected crashes when loading long or high resolution images. A voxel is four unsigned chars (0

55) for red, green, blue and alpha. I was tempted to store them as floats instead to support higher bit

filtering operations however due to its tight integration with the wxImage

(which uses unsigned chars) I followed suit.

To position the voxmap in space a world space position vector is subtracted in the

methods to convert them to object space lookups. See the Appendix

P
a

g
e
6

fBm volume noise slice in Processing

Ian Stephenson had developed the NCCAPixmap library which is a cross platform GUI and image handling

library which I was going to use and extend to handle voxmaps. In the end however, I eventually settled on

, another cross platform windowing library due to its extensive documentation and native image

my first proof of concept image using

. At this point the user could load in a sequence

in a voxel map and apply

. It is a 3D blur, so simulates

motion blurring as well as spatial blurring. It is based on a

which I expanded into 3D. The

idea of 3d image processes was something I wanted to

enforce as much as possible in an attempt to avoid treating

This algorithm was later rewritten to use 3D convolution

kernels, which were more difficult to create but allow the

implementation of other filter effects e.g. find edges more

I wanted two viewports in the interface. One is a 3d viewport which shows the block of voxels in space. The

other viewport shows the extracted data by the intersecting screen (the slicer). In between are the controls for

one dimensional array of voxels which is accessed using accessor

I think storing them in this format can sometimes be unstable.

A voxel is four unsigned chars (0-

55) for red, green, blue and alpha. I was tempted to store them as floats instead to support higher bit-depth

however due to its tight integration with the wxImage object

To position the voxmap in space a world space position vector is subtracted in the getVoxel() and

methods to convert them to object space lookups. See the Appendix Figure 18 for an

illustration of how the items are arranged

camera's pivot. The pivot itself is set to the centre of the voxmap. Another matrix is used to position, orientate

and scale the slicer. The slicer is a bilinear patch

2d coordinates – u and v) based on the image resolution

voxmap, then the resulting colour from that

pixel = voxelmap->getVoxel(

The four slicer vertices are positioned as offsets from the slicer pivot. This allows them to be transformed in

object space to produce non-planar slices, although there is no user interface for this control. For an intuitive

way of moving the slicer the matrix operations are multiplie

that other combinations can lead to unexpected behavior from the slice such as shearing.

non-axially aligned slice (in green) intersecting the volume, and the image that that slice results in. Moving the

green slice is reasonably responsive because it is implemented as a

remarch the voxels.

Figure 8 The 3D ray-marcher (left) showing the keyed video in volume form. The green slice plane is overlaid. (Right) The cubism like

result of that slice. Video source: The Human Motion Show

RESULTS

FEATURES

• Interactive GUI

• Interactive 3D viewport displaying the video as voxel data with wireframe slicer overlaid

• 2D viewport displaying the result of the current slice

• User controllable quality settings include

influence (depth), viewport scaling.

• Two proof of concept 3D convolution kernels

• Controllable colour keyer as a visualization aid

• Sequence image loading in variety of formats (TIFF, BMP, JPEG,

• Image saving

• Batch mode for multiple image saving with animated parameters

illustration of how the items are arranged. A matrix is used to position the camera to allow rotation around the

camera's pivot. The pivot itself is set to the centre of the voxmap. Another matrix is used to position, orientate

is a bilinear patch
xvi

 defined by 4 corners. The patch is surface

based on the image resolution, and the returned 3d coordinates are looked up in the

from that is written to a framebuffer (a wxImage).

>getVoxel(slicer->SrfEval(u, v));

The four slicer vertices are positioned as offsets from the slicer pivot. This allows them to be transformed in

planar slices, although there is no user interface for this control. For an intuitive

e slicer the matrix operations are multiplied in this order: Rotation*Scale

that other combinations can lead to unexpected behavior from the slice such as shearing.

axially aligned slice (in green) intersecting the volume, and the image that that slice results in. Moving the

green slice is reasonably responsive because it is implemented as a separate layer, so there is no need to

marcher (left) showing the keyed video in volume form. The green slice plane is overlaid. (Right) The cubism like

The Human Motion Show

Interactive 3D viewport displaying the video as voxel data with wireframe slicer overlaid

2D viewport displaying the result of the current slice

User controllable quality settings include anti-aliasing, ray marcher resolution, ray step length, sample

, viewport scaling.

Two proof of concept 3D convolution kernels

Controllable colour keyer as a visualization aid

Sequence image loading in variety of formats (TIFF, BMP, JPEG, PNG)

Batch mode for multiple image saving with animated parameters

P
a

g
e
7

tion the camera to allow rotation around the

camera's pivot. The pivot itself is set to the centre of the voxmap. Another matrix is used to position, orientate

defined by 4 corners. The patch is surface evaluated (given

coordinates are looked up in the

The four slicer vertices are positioned as offsets from the slicer pivot. This allows them to be transformed in

planar slices, although there is no user interface for this control. For an intuitive

d in this order: Rotation*Scale*Translation. I found

that other combinations can lead to unexpected behavior from the slice such as shearing. Figure 8 shows a

axially aligned slice (in green) intersecting the volume, and the image that that slice results in. Moving the

separate layer, so there is no need to

marcher (left) showing the keyed video in volume form. The green slice plane is overlaid. (Right) The cubism like

Interactive 3D viewport displaying the video as voxel data with wireframe slicer overlaid

aliasing, ray marcher resolution, ray step length, sample

P
a

g
e
8

• Progress bars on most time consuming operations

• Cross platform (tested on Linux and Windows)

KNOWN BUGS

• Pitching in the 3D view can produce a divergence of the video cube and the overlaid slice plane

• Windows does not recognize user text input into the spinners as an event, they must be clicked

• With lower resolution clips, the anti-aliasing option can produce artifacts in one half of the slice plane

• The rendering progress bar crashes on Linux, it has to be compiled without it

• On Windows, the last imported frame is copied to the front

IMAGES

Please see the videos for animated versions of some of these images

Figure 9 Temporal aliasing artifacts appear on quickly moving objects. A 10°

slice around Y. Source: BBC Motion Gallery

As discussed above, Klein used optical flow to

improve the results for the NPR. Some

utilization of this would have been nice in my

case as well – the time axis is too low

resolution compared to spatial. Figure 9

shows this quite clearly, where tearing occurs

around edges as the slicer goes from one

frame to the next. It is especially evident on

higher resolution frames. A PAL resolution

300 frame video (720*576*300) is much less

cube like than a half resolution one

(360*288*300) which is what I did most of my

tests with.

My oversight was I assumed the cube would scale uniformly to full resolution PAL, which of course it didn’t as

the temporal resolution was the same on both. Thus, slicer numbers that produce one result with one

resolution will produce a different result at a different resolution (provided the temporal resolution remains

the same).

Figure 10 The 3d volume of the flowers video showing 2 slices.

Source: BBC Motion Gallery

Figure 11 Rotating vase of flower cut 90° around X, Slice

Creating unwrapped images for texture

projection in computer graphics still presents a

problem for artists. In Figure 12 the software is

used to create a turntable image which could be

applied as a cylindrical map to a 3D model

avoids the long image editing

assembling photographs from multiple angles.

Reflective objects, such as vases and soft drink

cans would be largely unsuitable for

conventional multiple angle photographing, and

would create a higher quality image with

turntable slicing as the reflection would at least

be consistent across the object.

the flowers video showing 2 slices.

Figure 10 Shows the ray marched cube and two

slice planes (green). Figure 11

these slices. The attached video

the slice plane moving in the direction of the

arrow. It is interesting to see that there is still

sense of organic structure in the sliced video

despite its abstract form. Interestingly, by

following the same process, the original video can

be reconstructed from the sliced video as all the

data is in there, just reordered. The software is of

course unbiased as to which

Rotating vase of flower cut 90° around X, Slice translating along Y.

Creating unwrapped images for texture

projection in computer graphics still presents a

the software is

used to create a turntable image which could be

to a 3D model. This

avoids the long image editing process of

assembling photographs from multiple angles.

Reflective objects, such as vases and soft drink

cans would be largely unsuitable for

conventional multiple angle photographing, and

would create a higher quality image with

eflection would at least

Figure 12 A Cylindrical map is generated by placing the subject on a

turntable. Source: The Human Motion Show

P
a

g
e
9

hows the ray marched cube and two

11 shows the results of

these slices. The attached video is an animation of

the slice plane moving in the direction of the

arrow. It is interesting to see that there is still a

ructure in the sliced video,

despite its abstract form. Interestingly, by

following the same process, the original video can

be reconstructed from the sliced video as all the

data is in there, just reordered. The software is of

course unbiased as to which axis is which.

A Cylindrical map is generated by placing the subject on a

turntable. Source: The Human Motion Show

P
a

g
e
1

0

Figure 13 Traversing along Y (green) and X (red). Source: BBC Motion

Gallery

Moving the slice plane along X and Y axes as

opposed to T is demonstrated again in Figure

13, resulting in slit-scan images like those

below. Figure 14. Elements that are not in

motion are stretched out across the frame,

disappearing. These images show only

movement of a certain row or column of pixels

at all times in the video. A BMX flatlander

(Keelan Phillips) clip was chosen to demonstrate

the effects of vertical, horizontal and rotational

movement.

Figure 14 (Left) An XZ slice. (Right) A YZ slice

Figure 15 360° Panoramic image generated from panning video footage. Dynamic panoramas as described previously are also possible,

by moving the slice diagonally in an XZ direction. This is very easy to visualize by examining the 3D view. See Appendix Figure 17.

HDRI PANORAMAS

Producing HDR images is often time consuming and requires specialized equipment. Here I describe a possible

method for quickly producing low distortion HDRI panoramas with only a neutral density filter.

HDRI images are commonly captured for use in computer graphics by taking bracketed exposures of a

mirrored ball, usually from more than one angle or by using a wide angle lens on a tripod and taking multiple

exposures in different directions. Mirrored balls result in fewer pictures necessary but can cause severe

distortion whereas the second method produces a lot of images and requires a complex stitching process to

produce undistorted HDR images.

To generate my panoramas I used a 90° slice around Y. This tells the software to pick a vertical column of pixels

from each frame and place them next to each other in the output image. The user can choose which column to

use (by moving the rotated slice in X) and the panorama will look pretty much the same. Figure 15 shows one

of these possible panoramas. The amount of unique (but redundant) panoramas that can be created this way

P
a

g
e
1

1

is equal to the horizontal resolution of the video – 720 in standard PAL. By utilizing a gradated neutral density

filter (ND) of the required attenuation factor, oriented horizontally, then each vertical column of pixels will

capture the scene at a unique exposure. All of these individually exposed panoramic images can be captured in

one pan of the camera and have very good registration with each other, provided the user panned the camera

at any constant speed. The panning speed merely defines the horizontal resolution of the panorama as the

slice can be cut at any angle.

KEYING POTENTIAL

While testing the 3D ray marcher, I imported some video footage that I had keyed in shake. This displayed a

sweeping volume of the subject in the 3D view. Interestingly it presented a number of flaws in the key that I

had not noticed while in the compositor. Spill was evident on the surface of the object – the surface of the

object represents the important matte edge achieved with the keyer. To fix these issues with a conventional

compositor would be very laborious as it involves dealing with very fine details only 1 pixel wide. If there had

been paint tools in the ray marcher these problematic areas would have been trivial to fix, and it would not

suffer from jittery frame-to-frame incoherencies that manual rotoscoping can.

ANALYSIS

OVERALL

I’m reasonably happy with the final program. I particularly like when I’m surprised by the unusual slices it

shows me when new, unremarkable source clips are loaded in. The rotating flowers slice was my favourite

example of this. It would have been nice to test it with a wider variety of footage, such as timelapses, rack-

focusing, aperture changes, tracking shots as I’m sure there are some unexpected results to be found. I

especially would have liked to test the HDR panoramic idea and the Stanford CityBlock orthographic image

reproduction to include in the report. High frame rate video would also have been useful as, at only 25fps, that

axis seems to be the worst for aliasing artifacts unless the movement is very slow.

What I found particularly exciting was the extent of research and development into related areas. It made me

realize that recording a scene using a standard camera can, at times, be quite limiting and there may be better

ways of sampling data, or of revealing the data you didn’t know you had.

PROGRAMMING

Programming with wxWidgets was an incredibly steep learning curve because I knew very little about

interfaces and C++ OOP in general. Parts were immensely frustrating, but other things I got almost for free, like

the loading bars which I think is a nice touch. Although I’m still a relatively weak programmer it has given me

the confidence to undertake programming challenges which I would never even consider before. I understand

to a greater degree the importance of modularity and consistency. Parts of my program are a bit inconsistent,

for example the method to transform the slicer is implemented differently to the one which transforms the

camera. The slicer transformations are implemented as a member functions in the slicer class, whereas the

camera’s are in the GUI class rather than in the camera class. It was satisfying to implement some of the things

we had covered in maths over the 3 years (vectors, matrices, interpolation, coordinate systems and surfaces)

and have them do something useful. I was particularly proud of the ray marcher which I had been quite

worried about but actually it was relatively easy and demonstrated the power of simple vector operations. I’ve

established a significant fondness for Processing, even though I didn’t use it in the end I suspect I will be

playing with it in the future and think it would have been great to have been exposed to it sooner.

SHORTCOMINGS

A number of things didn’t get done that I had hoped

for at the start. One was a volume shutter. Currently

the slice plane is infinitely thin, and will only consider

voxels that intersect its surface. By giving the slice

plane some depth as in Figure 16

voxels that fall inside this shape blend together

somehow, some interesting results may be possible.

Glassner
xvii

 1999 states that a more realistic shutter

blurring can be achieved in rendering programs by

modeling the ‘shape’ of the shutter i.e. the exposed

area over time. His paper was also useful in helping to

visualize time as a spatial axis.

An important missing feature from a

the 3D view. All translation is in world space also, so for example moving

slice plane when it is rotated arbitrarily is difficult. An object space switch would be very useful.

the slider parameters can be clunky

been held down for a few seconds.

with the voxels. Some sort of graphic

The implementation of the voxels is

would be possible, but it would require changes in many areas of the program. Changing the size of a voxel

would be extremely difficult as the

Having variable sized voxels would be useful in supporting anamorphic video, but more practically as an

optimization. For example on initialization the program would only create a new vox

properties to the one next to it. This could allow for huge memory savings in transparent images. Currently the

memory is allocated as a single huge chunk and can easily exceed hundreds of megabytes. This can lead to

instability in the event of memory failures.

It can also be quite slow, particularly when dealing with PAL resolution video. The ray

slow that it can be frustrating to use at a decent quality setting. The slicer is faster than I thought it would be,

however with anti-aliasing it slows down considerably as it is doing 8 look

are the 3D effects. They involve a 3D box (3x3x3) or (5x5x5) or (7x7x7)

entire voxmap performing weighting operations. These are completely unoptimised, most voxels get looked up

27 times each which is somewhat ridiculous. One way to improv

voxels every time it goes onto a new base voxel instead of the full 27. I found creating and using these kernels

the most unpleasant part of the project as it was difficult to troubleshoot

That is probably the reason there are only 2 filters and they are very slow.

CONCLUSION

I believe there is tremendous potential in treating video in this way. I was surprised by the relatively small

amount of commercial development in the area f

applications. With some of the developments in plenoptic video photography it would be interesting to see

how future acquisition devices differ from conventional still and video cameras and inde

data is then processed. I like the idea of capturing ‘scene data’ rather than simply capturing ‘pictures’

versions of what our eyes see, and then trying to coax the relevant data out of it.

et done that I had hoped

for at the start. One was a volume shutter. Currently

the slice plane is infinitely thin, and will only consider

voxels that intersect its surface. By giving the slice

16, and having the

voxels that fall inside this shape blend together

somehow, some interesting results may be possible.

states that a more realistic shutter

rendering programs by

modeling the ‘shape’ of the shutter i.e. the exposed

area over time. His paper was also useful in helping to

Figure 16 A circular shutter. The shutter cover moves in a left

right motion, stays open for a while, then slides back into place

Glassner

An important missing feature from a user’s perspective is the lack of interactive controls for the slice plane in

All translation is in world space also, so for example moving in a perpendicular direction

slice plane when it is rotated arbitrarily is difficult. An object space switch would be very useful.

the slider parameters can be clunky, particularly in Windows where the slider speed accelerates after it has

held down for a few seconds. It is also difficult to tell where in space the slicer is, and where it intersects

graphic displaying this would have been useful.

voxels is quite specific. Adding additional properties to a voxel such as velocity

would be possible, but it would require changes in many areas of the program. Changing the size of a voxel

would be extremely difficult as the whole program makes the assumption that a voxel is a one unit cube.

Having variable sized voxels would be useful in supporting anamorphic video, but more practically as an

optimization. For example on initialization the program would only create a new vox

properties to the one next to it. This could allow for huge memory savings in transparent images. Currently the

memory is allocated as a single huge chunk and can easily exceed hundreds of megabytes. This can lead to

he event of memory failures.

It can also be quite slow, particularly when dealing with PAL resolution video. The ray-marcher is so

slow that it can be frustrating to use at a decent quality setting. The slicer is faster than I thought it would be,

aliasing it slows down considerably as it is doing 8 look-ups instead of one. Most slow

involve a 3D box (3x3x3) or (5x5x5) or (7x7x7) - the convolution kernel, traversing the

performing weighting operations. These are completely unoptimised, most voxels get looked up

27 times each which is somewhat ridiculous. One way to improve this would be to only load in the 9 new

voxels every time it goes onto a new base voxel instead of the full 27. I found creating and using these kernels

the most unpleasant part of the project as it was difficult to troubleshoot and the 3d arrays became

That is probably the reason there are only 2 filters and they are very slow.

I believe there is tremendous potential in treating video in this way. I was surprised by the relatively small

development in the area for visual effects production as the method could have several

applications. With some of the developments in plenoptic video photography it would be interesting to see

how future acquisition devices differ from conventional still and video cameras and inde

I like the idea of capturing ‘scene data’ rather than simply capturing ‘pictures’

versions of what our eyes see, and then trying to coax the relevant data out of it. Certainly for me, using this

P
a

g
e
1

2

A circular shutter. The shutter cover moves in a left-to-

right motion, stays open for a while, then slides back into place -

interactive controls for the slice plane in

in a perpendicular direction to the

slice plane when it is rotated arbitrarily is difficult. An object space switch would be very useful. Manipulating

where the slider speed accelerates after it has

It is also difficult to tell where in space the slicer is, and where it intersects

. Adding additional properties to a voxel such as velocity

would be possible, but it would require changes in many areas of the program. Changing the size of a voxel

whole program makes the assumption that a voxel is a one unit cube.

Having variable sized voxels would be useful in supporting anamorphic video, but more practically as an

optimization. For example on initialization the program would only create a new voxel if it had different

properties to the one next to it. This could allow for huge memory savings in transparent images. Currently the

memory is allocated as a single huge chunk and can easily exceed hundreds of megabytes. This can lead to

marcher is sometimes so

slow that it can be frustrating to use at a decent quality setting. The slicer is faster than I thought it would be,

s instead of one. Most slow of all

the convolution kernel, traversing the

performing weighting operations. These are completely unoptimised, most voxels get looked up

e this would be to only load in the 9 new

voxels every time it goes onto a new base voxel instead of the full 27. I found creating and using these kernels

the 3d arrays became confusing.

I believe there is tremendous potential in treating video in this way. I was surprised by the relatively small

or visual effects production as the method could have several

applications. With some of the developments in plenoptic video photography it would be interesting to see

how future acquisition devices differ from conventional still and video cameras and indeed how that captured

I like the idea of capturing ‘scene data’ rather than simply capturing ‘pictures’ - digital

Certainly for me, using this

P
a

g
e
1

3

unintuitive but fundamentally simple video cube technique has created an awareness of some of the potential

that those developments might have.

P
a

g
e
1

4

APPENDIX

By translating the slice in the

direction indicated by the

arrow, dynamic (moving)

panoramas can be achieved.

Though not a feature in the

program, it may be possible to

lay these blocks beside each

other and create full 360°

moving panoramas. Wavy lines

on the roof of the box are an

indication of non uniform

panning speed.

Figure 17 Clockwise from left: The animation window for setting start and end frame parameters. The default screen on Windows. The

volume of the kitchen panorama

Figure 18. The structure of the 3d scene. Keeping a mental image of how things were laid out in the scene was invaluable when trying

to get the pieces to work together

P
a

g
e
1

5

REFERENCES

i
 Andrew Davidhazy “Slit Scan Photography”, School of Photographic Arts and Sciences, Rochester Institute of

Technology. http://www.rit.edu/~andpph/text-slit-scan.html. Accessed Feb 12
th

 2008

ii
 S. Fels and K. Mase, “Interactive Video Cubism” In Proceedings of the Workshop on New Paradigms for

Interactive Visualization and Manipulation (NPIVM), pages 78–82, Nov 1999

iii
 S. Fels, E. Lee, K. Mase, “Techniques for Interactive Video Cubism” Proceedings of ACM Multimedia. Pages

368-370. Oct. 2000.

iv
 TxTransform shake macro by Jean First available at

http://highend3d.com/shake/downloads/macros/image_generation/3495.html

v
 Temporal Median Filter. royalstel: http://www.youtube.com/watch?v=16j91-nksfg

vi
 P. Hodgetts, “Displacement Mapping in Adobe After Effects”.

http://library.creativecow.net/articles/hodgetts_philip/displacement.php. Accessed 28
th

 Feb 2008

vii
 Tx-tranform ©1998-2001 Martin Reinhart

viii
 A. W. Klein, P. Sloan, A. Finklestein, and M. Cohen, “Stylized video cubes,” in Proceedings

of SIGGRAPH 2002.
ix
 A. W. Klein, P. Sloan, A. Finklestein, and M. Cohen, “Stylized video cubes,” in Proceedings

of SIGGRAPH 2002.

x
 J. Neumann http://www.cfar.umd.edu/~jneumann/videogeometry/plenoptic.htm Accessed 9

th
 March 2008

xi
 R. Ng, M Bredif, G Duval, M Levoy, M Horowitz, P Hanrahan “Light Field Photography with a Hand-held

Plenoptic Camera” Stanford Tech Report CTSR 2005-02

xii
 A. Rav-Acha, Y. Pritch, D. Lischinski, S. Peleg “Evolving Time Fronts: Spatio-Temporal Video Warping” p5-6

Technical Report 2005-10, The Hebrew University of Jerusalem, 2005.

xiii
 Processing - Processing is an open source programming language and environment for people who want to

program images, animation, and interactions. www.processing.org. Accessed continually

xiv
 wxWidgets - wxWidgets lets developers create applications for Win32, Mac OS X, GTK+, X11, Motif, WinCE,

and more using one codebase. www.wxwidgets.org. Accessed continually

xv
 2D blurring algorithm by Jim Scott. www.blackpawn.com/texts/blur

Accessed 11
th

 Feb 2008

xvi
 S. D. Ramsey, K. Potter Vector & Bilinear Patch implementation in C. Journal of Graphics Tools

http://jgt.akpeters.com/papers/RamseyPotterHansen04/ 2003

xvii
 A. Glassner “An Open and Shut Case” IEEE Computer Graphics and Applications Vol1, Issue 3 1999

