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Abstract

Computer Animation of complex figures (human or otherwise) is a complex and often arduous task.  There are two main methods of animating these figures. The first is through interpolating animation, which comes between key-frames. Interpolation can either be completed by hand or through the use of the computers analytical properties. Another method is through the use of high-level algorithms that can be used to animate specific cycles or repetitious movements.  These can be slightly altered through the parameters implicitly built into the algorithm.  The techniques of Inverse Kinematics, that originally began life in the field of robotics, are helping animators by reducing the amount of specific information needed to change between key poses, whilst keeping complete control over the range and look of movement. In this paper I hope to look at a few of the techniques, past and present, that make Inverse Kinematics such a useful and interesting field

Introduction

Inverse kinematics has quickly become an essential tool for animators, enabling quick and fairly painless posing of complex skeletons, for the process of animation.   Many complex skeletons may have over 100 Degrees of Freedom making it impossible or at least unfeasible to position all of the joints for the purpose of animation.  Using an Inverse Kinematics algorithm the animator need only move one joint and the computer will calculate all the necessary transformations needed to get to the desired point.

Chapter 1.1Kinematics and Kinetics

   In order to explain what Inverse Kinematics are one must first understand the difference between Kinematics (both inverse and forward) and Kinetics.  Kinematics is a method of studying motion without regard to the forces that are responsible for creating it.  Using kinematics, animating motions that are not realistically feasible, become possible due to a lack of ‘forces’ acting on the figure.  Movements such as those that may cause overbalance or achieve ranges of motion outside of physical reality.

   Kinetics (also know as dynamics) is useful to the animator who is interested in how forces act upon an object in order to create motion. This can be extremely attractive to an animator as it can provide a level of realism not easily obtainable with Kinematics.  There are two types of Kinetic or dynamic simulation: Forward and Inverse.

   Forward Dynamics involves the application of time-varying forces and torques.  Certain forces such as gravity can be left to the computer to calculate, but the animator will directly apply others to the desired objects in the scene.  The motion can then be calculated (or in this case it is more of an approximation of real forces) at certain time intervals by solving the mathematical equations necessary for the forces applied to the objects.

     Inverse Dynamics automatically calculate the forces and torques applied to a specific object.  This has brought 

   There are also two types of kinematic motion: Forward and Inverse.  Forward Kinematics involves setting the position and orientation of objects at specific frame times.  In the case of a skeleton this would involve explicitly setting the rotation of each joint in the hierarchy at each frame in order to create the desired effect or pose.  Interpolation between key-frames is used in order to save having to set these rotation values at every frame.  If for example an animator wished to position a hand then the shoulder joint would have to be rotated followed by the elbow and finally the wrist.  

   Inverse Kinematics is essentially the act of moving a desired joint to a desired position and having the computer calculate the necessary transformations for all the other joints in order to enable the desired joint to achieve that position.

Chapter 1.2 Inverse Kinematics: From Robotics to Animation

   Most of the Inverse Kinematics techniques used in Character Animation have been adopted from the field of Robotics. As most of the algorithms were developed for the needs of robots a straight ‘port’ to computer animation can cause problems to arise. In their paper “Real Time Inverse Kinematics Techniques for Anthropomorphic Limbs” Tolani, Goswami and Badler[2] give a list of possible problems that can occur.  I shall summarise them here:

1. In Robotics tasks only involve constraining the postion  and orientation of the end effector. In animation other constraints such as,  aiming the end effector, keeping the figure balanced and avoiding collisions must be taken into account. To aggravate the problem more than one constraint may be in effect at one time.

2. Few Robots have more than six joints. A human figure can have more than 100 degrees of freedom
.  Traditional algorithms may breakdown or become unacceptably slow.

3. In most conventional robots joints are independent and joint limits (the amount a joint can move in a given degree of freedom) are simple linear constraints.  In a human skeleton joints are coupled because they either form a closed loop or move simultaneously when a single muscle contracts.

4. Errors are less critical in computer animation as a crude estimate of motion of the end effector can create a feasible trajectory. (for simulations and such).

Chapter 2.1 Approaches to Inverse Kinematics

   In Inverse Kinematics a problem is solved through one of two types of algorithm; analytical solutions (which can be subdivided into Closed Form and algebraic-elimination based methods) and numerical solutions.  Analytical methods can be said to be complete because they find all possible solutions.  Closed form solutions are found through the use of non-iterative (or non-linear) equations, but can only be obtained for 6-degree-of-freedom systems.  In his paper “Introduction to Robotics: Mechanics and Control” John Craig shows that only revolute (a joint with rotational freedom) and prismatic (a joint with translational freedom) joints with 6DOF (degrees of freedom) in a single series chain i.e. those in one line or hierarchy with only one child, can be solved using closed form solutions. 

    Numerical methods iteratively calculate an approach to solutions as closely as possible.  The approach can be used for very complex IK chains but because it is iterative it can take more time to compute.  In general, Analytical solutions are preferable because they give all solutions and are computationally faster. The simplest numerical method is the straightforward application of the Newton–Raphson algorithm for solving systems of non-linear equations. In the Newton-Raphson methods 
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   Here f is the forward kinematics map, g is the desired position and orientation of the end effector, and q is the joint angle vector.  The Forward Kinematics map is described as:
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   In other words given the values of 
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 variables, 
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 returns the position and orientation of the end effector.   This basically means that the position and orientation of each bone is calculated in turn and added together.

   When implementing an algorithm in code there is an approach which can be followed known as Gradient Following.  This involves simply following the contours on a gradient map (or graph) till the point closest to the target is reached.  This can be fairly easy to implement but has some drawbacks.   Firstly as the end effector closes on one of the minima (plural of minimum, to describe the lowest point on a graph) the gradient falls to nothing meaning that the end effector will take forever to reach the target. In this case the gradient is subtracted from the position in configuration space, moving the effector closer to the target. A simple way of speeding this up is to subtract the gradient from the speed at which it moves through configuration space.   This method can be easy to implement but can slow down considerably as the effector approaches the target, and may eventually be slower to calculate than some of the more complex algorithms (which may use minimization equations)

Chapter 2.1.2 What Makes a Good Inverse Kinematics algorithm?

   Just like any other, Inverse Kinematics algorithms must conform to a certain set of criteria that the user of said algorithm is hoping to exploit.  This means that the algorithm chosen by the user must have qualities close to that desired:


1.Efficiency: As in all aspects of mathematics the efficiency of an algorithm is paramount.  The more efficient an algorithm the easier to use, and the faster it will be.  As IK is needed in real time, an IK algorithm needs to be efficient.  Efficiency can however be difficult to determine as it depends on the quality of the implementation.  This means that depending on how an algorithm has been coded can effect how well it performs.  Certain algorithms may perform well on certain problems and poorly on others, thereby confusing the term efficient.

2.Reliability: An algorithm can be considered reliable if it can consistently find a solution to the problem when one exists.  This also means that it will need to be able to detect when a particular problem is unsolvable.  This is particularly important in the world of computers as an inability to do this could cause a program to descend into an infinite loop.


3.Completeness: In some instances it will be necessary for an algorithm to be able to find the entire set of solutions to a problem.  As can often occur in IK, there may be more than one possible way of an IK chain reaching the desired position with the desired orientation.  Any algorithm that can satisfy this condition can be termed complete.


4.Stability: Numerical stability refers to an algorithm’s robustness when it is presented with degenerate or ill-conditioned cases.  An example of this would be a Jacobean singularity
.

Chapter 2.2 What are We Trying to Reach?   

   There is one major part of an Inverse Kinematics system that might at first glance be over looked, yet plays a vital role.  What is the end effector trying to reach and once at the desired goal, how is it oriented?  It is easy to assume the goal is a point in space and therefore there is only one solution.  This may not be the case as the goal may lie on the floor, a table top, a cup or even just a volume in space.  In order to solve the problem the user must define exactly what the goal is:

1. Position Goal: With a Position goal, the user wishes to position the end effector but is unconcerned with the final orientation

2. Orientation Goal: With an Orientation goal, the user is not interested in the final position of the end effector but only in the orientation.

3. Position and Orientation Goal: This kind of goal corresponds to the basic Inverse Kinematic problem.

4. Plane Goal: The user may wish the end effector to lie on a plane (for example they might wish a characters arm to rest on a table or floor).  The plane will be represented by a point and a surface normal(see fig 2.1).   The surface normal will be used as the vector from the end effector to the nearest point on the plane.

5. Cylindrical Goal: This may come in handy if the user wishes to touch a cylindrical object.  

   The user may be able to define any shaped goal or target.  The Mathematics involved will become more complex as the shape of the goal also becomes more complex.  The effect of this can be lessened if the user is not so much concerned with a position or orientation goal but with an aim goal.  The user may sometimes wish to aim a line from the end effector at a point that sometimes may not be reachable.  A goal may not even be defined in space.  Since we are able to use techniques that utilize gradient following (see chapter 2.3), the goal may just be a vector in a certain direction

Chapter 2.3 The Actual Algorithm

   In this chapter the algorithm that I consider to be the most easily understood of Inverse Kinematics solutions is explained in layman terms, that is in terms more easily understandable than those given by the men who introduced it (see below).

Chapter 2.3.1 Cyclic Co-ordinate Descent

   The cyclic co-ordinate descent method is a technique that attempts to both position and orient the end effector by manipulating one joint at a time.  Chris Welman first introduced the method in his masters thesis as an extension to work done by L-C. T.. Wang and C. C. Chen in an IEEE paper on ‘A combined optimization method for solving the inverse kinematics problems of mechanical manipulators’. The method is iterative in nature.  Each iteration involves a single traversal of the manipulator (the IK chain) from the most distal link (that furthest away from the base) inwards towards the manipulator base. The basic strategy for this method is to start with the distal link (the link furthest away from the manipulator base) and rotate it so that it points towards the goal.  After this is accomplished the algorithm moves down the manipulator to the next link and the process is repeated.  When the manipulator base is reached, determine if the problem has been solved.  If this condition has been satisfied then the problem has been solved.  If not then the whole process is run again starting from the first step.
   Taking the current position of the pivot of the current link (in this case the distal link), a point P, a vector can be created from P to the current end effector position E.  Another vector can be created from P to the desired target position T.  The angle 
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 must be calculated in order to determine the degree of rotation needed to orient P towards T.  The dot-product relaionship between two vectors is described as 
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   The angle 
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 can then be found using the inverse cosine of the dot product such that:
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This is fine until it is considered that the angle does not imply direction and a direction is needed in order to orient the pivot correctly.  The cross product of two vectors creates a vector perpendicular to the two original vectors. Extending the vectors from two to three dimensions in this way creates a z value.  This z value can be used to determine the direction of rotation. If we take 
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   then the cross product of the two vectors will give us:
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Since it is the z value that will determine the direction of rotation, only the third term (that of z) is of any interest.  Therefore the sign (either + or -) of this z term:
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   will define the direction of rotation.

A brief overview of the equation

   The pivot point of the distal link is found and two vectors are created, from the pivot point to the end effector and from the pivot point to the target.  The inverse cosine of the dot product of these two vectors gives.  Using the cross product, the third term (that of the z axis) gives the direction of rotation.  The algorithm will then iteratively move to the next link in the chain (towards the base manipulator) and create two new vectors from the pivot point of the link to the end effector and the target.  The dot and cross product calculations will be repeated and the link will be rotated towards the target.   This will happen iteratively down to the base manipulator.  This will repeat until the end effector is close enough to the target to satisfy the algorithm.

Chapter 2.3.2 Constraints

   Although Inverse Kinematics makes posing a character less tedious (by reducing the amount of specific information needed from the animator) problems can still arise due to unwanted movement by parts of the skeleton the animator wishes to remain stationary.  Inverse Kinematics would be more useful if only those parts the animator wishes to move actually move, and those the animator wishes to remain stationary, remain stationary, no matter how the rest of the skeleton is manipulated.  A simple way of achieving this is through simple geometric constraints on both the position and orientation of the end effectors within a skeleton.   In his masters thesis Chris Welman[1] discusses a ‘Penalty Method’ of constraint so that


“…when a constraint is violated a restoring force is introduced to push the system back into a legal state where all constraints are satisfied”1
   This basically means that if a part of the skeleton moves illegally, then the computer applies a ‘force’ that will push it back into its original state.  The problem with this method is that it only take effect after an illegal state has been reached and therefore unwanted movement will still take place.

   At the moment, from an implementation point of view, whenever a chain bends to try and reach a target each of the links bends to an equal degree.  Sometimes this might not be the effect that the animator is looking for.  On certain occasions the animator might wish for the chain to bend more in the middle or even at the base or tip.   To be able to achieve an effect like this is quite simple.   All the animator would have to do is limit, or constrain, the amount that certain pivots are able to rotate.   Another method would be to apply a scale factor to the rotation values so that even if the same values are input the degree of rotation would not be the same.

Chapter 3 Implementation

Chapter 3.1 Single link Chain

   The Simplest IK chain is one that consists of only one bone, or link.  If we consider this in 2D (this is much simpler) then we have a target Position and a Single link object (the bone).  We want to orient the object so that it points towards the target.  To do this we must first calculate the rotation angle, in this case we shall call it (. If we say that the distance to the target is x then using simple trigonometry we know that the distance to the target is targetx – objectx.  The distance in y can be calculated in the same way.  Therefore y/x  gives the tangent of the angle (.  The solution is therefore found by calculating the inverse of the y tangent divided by the distance in x.   This can be shown as:


( = atan(ydistance/xdistance) 
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fig 3.1[3]
Chapter 3.2  Increasing the difficulty: adding an extra link

   In adding an extra link we make the problem much more complex.  Instead of simply calculating the angle ( for the first bone, we must now also calculate the same angle for the second bone.  By keeping it in a single plane (in this case the x,y plane) the calculations are much simpler.

   The first bone is represented by its length, which we shall call L1, its rotation about the origin, which we shall call (1 and its start point (which coincides with the origin) P1.  The second bone is represented by it length L2, its rotation about the local axis (2 and its start point P2.  This will put the end position at a point T. If we apply basic trigonometry then we can calculate that:
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fig3.2[3]
   This means that if we then add the length of the second bone we get a position for the point T:
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(2)

   Having worked this out we must now invert the equation so that we can calculate it for ( using the known values.  Assuming that the first point (the pivot of the first bone) is anchored or stationary then we already know this value.  Using the trigonometric identities:
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   We can then substitute in (:
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   We can therefore restate the equations using those from (2) as:


[image: image20.wmf]  

T

.

x

=

P

1

.

x

+

L

1

*

cos

q

1

(

)

+

L

2

*

cos

q

1

(

)

cos

q

2

(

)

-

sin

q

1

(

)

sin

q

2

(

)

(

)

T

.

y

=

P

1

.

x

+

L

1

*

sin

q

1

(

)

+

L

2

*

cos

q

1

(

)

sin

q

2

(

)

+

sin

q

1

(

)

cos

q

2

(

)

(

)


   If we square both sides of the equations and then add them together the equation can be rearranged to give:
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Therefore:
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   Once we have this all that is left to do is find 
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fig3.3[3]

   From this diagram we can see that 
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   Finding 
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 can be considered the same problem as solving a single IK link chain.  This is because the angles involved are the same. Therefore we can use the same equation as above:
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   For the sake of simplicity we will not use the inverse of this equation for the next part, but instead use the equation: 
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   Angle 
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 can be found using:
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   Now we can use the tan identity:
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   We will use this tan identity because it will reduce the number of Trigonometric function calls when we actually code the functions.

   Using this identity we can substitute the values of 
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   This is a rather ungainly equation so we need to simplify it.  To do this we can multiply out x and the value for 
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   Having simplified the equation we then need to find the inverse so that we can solve it for 
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   These equations will give us all the information we need to be able to write suitable code to create an Inverse Kinematics system.

Chapter 3.3 The Actual Code

The solution presented here is pseudo-code and as such will need some work if it is to work.

   The first thing we must do is to create a skeleton and then store it somehow.  A good solution would be to create a class in c++ that stores the skeleton information in a linked list with a parent member variable(for this example we will assume that this class has been created and is called ‘CCDLink’).  This way when it is accessed the computer will have to traverse a ‘hierarchy’ just like that of the skeleton.  Firstly we need to traverse through the linked llist in order to find the last link

{

CCDLink *link= link.next, lastLink, *tmpLink;  //used for accessing and traversing the linked list class of the skeleton

int tryCounter= 0; //a loop counter so that it does not enter an infinite loop

double x, y, dotProduct, theta, crossProd, magnitude;

VECTOR pivEnd, pivTarget; //vectors from the pivot to the end effector and the target

//find the last link

while (link->next)

{


lastLink= link; //make the last link the current link


link= link->next; //traverse to the next link in the chain

}

//this is where we start to calculate the cyclic co-ordinate descent method solution

while(tryCounter < 20) //so that we can break out if it is close enough or not reachable

{


//calculate the current end effector position


endEffector.x=  pos.x //x position of the last link


endEffetor.y=  pos.y  //y position of the last link


//we need to calculate the 1st vector which is the pivot to end effector vector


pivEnd.x= endEffector.x – link->pos.x


pivend.y= endEffector.y – link->pos.y


//we need to calculate the 2nd vector which is the pivot to target vector


pivTarget.x= target.x – link->pos.x//the targets position minus the pivots position


pivTarget.y= target.y- link->pos.y


//convert the vectors to unit vectors


magnitude= sqrt(pivEnd)


magnitude=sqrt(pivTarget)


//calculate the dot product


dotProduct= pivEnd.x* pivTarget.x + pivEnd.y *pivTarget.y


//calculate the cross product, this will give us our z axis in which we can rotate and the direction to rotate in


crossProd=  pivEnd.x*pivTarget.y-pivEnd.y*pivTarget.x //remember we are only concerned with the z value


if(crossProd >0)


{



theta= -//rotate in a minus direction


else


{


theta = +//rotate in a plus direction

}

}


//set the position and rotation matrix for all the links in the linked list


tmpLink = link;


while(link)


change link;


//move onto the next link


link = lastLink

}

This is a very basic implementation of the cyclic co-ordinate descent method. This method is efficiently calculated (provided the code is efficiently written) and as such presents a reasonable solution for real-time display. If the reader actually wanted to get this to work then a few things need to be done.   Firstly a linked list class would have to be created to store the skeleton data.  This would have to be stored in matrix form as values for the position and orientation of each link would have to be stored.  Any desired constraints would have to be coded in.  Most importantly the reader would have to write the code responsible for displaying this visually i.e. they would have to write it in openGL, DirectX or any other visual language. 

Chapter 4 Conclusion

   In this paper we have looked at the cross over of inverse kinematics from Robotics to Animation.   We have discussed what makes an efficient algorithm and why certain algorithms fair better than others.  We have looked at one method that is particularly efficient and robust and even attempted to write pseudo-code in order to demonstrate that it can in fact be implemented.   I would like to take this opportunity to say that when I began this project I envisaged it more as a research project than anything else.  I was intending to write some sort of implementation, but this proved more difficult than expected.  Firstly I had to research and understand many differing algorithms and methods and then I had to choose one that I could attempt an implementation for.  I have found a lot of the mathematics involved very difficult to comprehend and so much of my time was spent trying to understand what I was reading.  I feel that although it was difficult, I have learnt a lot of new mathematics through the duration of this project and this will only help me in the future.  Given sufficient time I will be able to appreciate the algorithms more fully and implement them efficiently.  I am planning to continue my research after the conclusion of this project, as it is an area that still interests me greatly.
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� Degrees of freedom can be explained as follows.  An articulated object is connected by a series of joints, each of which makes up the degrees of freedom of the next joint in the hierarchy. This describes how a joint is allowed to move.  Most joints in a character will have more than one degree of freedom, for example the wrist or ankle joints can rotate in the x, y and z axis and so they are described as having three degrees of freedom.





� A matrix is said to be singular when two or more rows are linearly dependent and a manipulator is said to be in a singular configuration when the Jacobean becomes singular.  This basically means that in certain examples a change in any of the rotational values will cause approximately the same movement of the end effector in a specific direction.  This often happens when all the joints in a hierarchy are in line with each other.
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