
 1

Simulating Air Bubbles for Computer Generated Fluids

Joel Green
National Centre for Computer Animation

Bournemouth University, UK

Abstract

Most of the available literature on fluid simulations has not included air bubbles. This paper presents a

technique to add air bubbles to a pre-computed or dynamically calculated fluid simulation. Bubbles form
naturally in splashing water so the omission of bubbles detracts from the believability and visual realism of a

fluid simulation. In this paper I propose a particle-based system that can be implemented with any particle-
based simulation of a fluid. The bubble particles are only created where needed and their movement is then

dynamically simulated according to the flow of the fluid into which they are introduced.

1.0 Introduction

Fluid simulations have become a major part of the
computer graphics industry, with higher expectations
on physical as well as visual realism.

Although the realistic simulation of fluids has been a
major topic of research in recent years, investigation
into simulating the air bubbles that get trapped in these
fluids has received considerably less attention. The
majority of previous work in the field of fluid
dynamics has concentrated on the simulation of the
fluid itself using the Navier-Stokes equations and very
few have included any work regarding bubbles.

Fluid simulations are growing more advanced and the
realism is approaching very high levels. However,
many fluid simulations still lack the inclusion of
trapped air bubbles which can be quite detrimental to
the overall effect. The addition of bubbles to a fluid
simulation can significantly enhance the visual
realism.

This paper presents a number of different approaches
to create air bubbles in a fluid system. One of the main
examples used in the literature is that of water pouring
into a glass. The practical assessment of this bubble
system concentrates on this example of pouring water
into a glass but the system is flexible enough to work
in any situation involving splashing water. The
ultimate aim was to produce a system that could
automatically add the creation of bubbles into a fluid
simulation within Alias Maya.

1.1 Previous Work

There exists a substantial body of work on fluid
simulation and only a small amount on bubbles.
Unfortunately most of the work with fluid simulations
concentrates solely on producing a realistic looking
fluid motion and tends to ignore the considerable
contribution that air bubbles can make towards a
convincing model of water. Most fluid dynamics make
use of the equations developed by Claude Navier in
1822 and George Stokes in 1845 (Navier-Stokes
equations) [FOS96]. A lot of work has been done over

the past 50 years to implement these equations using
computers and fluid movement can now be replicated
to a high degree of physical accuracy. Foster et al.

[FOS96] introduced some of the new approaches to
using the Navier-Stokes equations for the modelling of
fluid simulations giving greater control and subtlety
by coupling the velocity and pressure forces more
tightly.

There has been much less research concerning bubbles
and how they interact with fluids. Similar areas of
research have received some study such as the
representation of the geometry of bubbles [GLA90]
but there is little work concentrating on the interaction
between bubbles and fluids. Greenwood et al.
[GRE04] created a relatively simple method featuring
passive bubbles that are dynamically generated and
then simulated using the Eulerian velocity taken from
the fluid. The bubbles are simply represented by
spheres and do not have the ability to merge or split as
real bubbles do. Hong et al. [HON03] make use of the
volume of fluid method (VOF) to simulate individual
bubbles. These bubbles can merge and deform
depending on the surrounding forces and their own
surface tension. However this detailed simulation is
only used for the larger bubbles, spherical particles are
used for the smaller bubbles which are advected in a
similar way to those in Greenwood. Müller et al.
[MÜL05] recently published their work which uses
multiple fluids to achieve a full simulation of both the
water and the air. The fluid-fluid interactions are
simulated using particle systems. Air particles are
dynamically spawned where pockets of air are likely
to be trapped by the surrounding fluid, avoiding the
need for a full volume of air. This approach features
full interactive simulation between the fluid and
bubbles. Müller’s work is probably the most complete
work to date featuring some clever techniques and
impressive results, building on the previous work to
refine and improve techniques. Despite the quality of
the end result, again the methods do not have too
much scientific basis. Approximate equations and
models are used throughout with little reference to the
real physical nature of the phenomena.

 2

1.2 Simulating Air Bubbles In Maya

The system presented here is aimed to be a more
immediate tool that, unlike some of the previous
systems, can be used to add bubbles to a pre-computed
fluid simulation. The system is designed to work with
the popular 3D software, Alias Maya and offers an
efficient way to improve the aesthetic of fluid
simulations with the addition of bubbles. The bubble
system is approached completely separately from the
water simulation which allows the water simulation to
be finalised and the bubbles added at a later stage.
This could be advantageous as it negates the need to
re-calculate the water in order to change the bubble
motion.

2.0 Method Overview

This system is not designed to produce a simulation of
the fluid itself, but instead works from a dynamic or
cached particle system representing the flow of the
fluid. It is not a physically accurate simulation of the
bubbles; the focus was put on the visual result as
opposed to using detailed mathematical models which
are potentially slow to calculate.

A clean way of solving the problem of bubble
simulation would be to simulate the air as a
completely separate fluid system and have it interact
with the water fluid system [MÜL05]. To create such
a system for the air would require a great number of
particles which would be unworkably slow. Instead
here, to speed up the bubble simulation, bubble
particles are generated on the fly only in locations
where the air is likely to be trapped by the water and
therefore where the bubbles need to be created.

The bubbles in this model have no effect on the fluid
simulation as this did not seem to be a necessary
inclusion. The mass of air bubbles is so small in
comparison to the water that the effect they would
have on the water flow would be inconsequential. An
advantage of this approach is that the bubbles can be
added subsequently to the water being simulated.
Therefore, the water simulation may be finalised to get
the desired flow without having to be recalculated if
the settings for the bubbles are incorrect.

The bubble system is fundamentally a MEL (Maya
Embedded Language) expression that is executed for
each frame and calculates the positions and
movements of the individual bubble particles. The
motion and shape of the pouring water are represented
by a different particle system. Bubble particles are
emitted into this separate particle system at positions
where it seems likely that air will be trapped by the
water. These bubble particles are then assigned
velocity values depending on the velocities of the
surrounding water particles. In this way the bubbles
are transported through the fluid in a realistic manner.
A buoyancy value is also added to the upward y-
velocities of the bubble particles in order to recreate
the phenomenon of the rising bubbles. In order to

simplify the process of analysing the positions of the
different particles and to help averaging various
values, it was necessary to use a grid that was able to
divide the total volume into smaller local areas that
could be scrutinized separately.

2.1 Realflow/Fluid Grids

The fluid simulations for the water in this project were
created using a demo version of the program Realflow
[NEX06]. Realflow creates fluid simulations of
superior realism compared to that achievable in Maya.
After creating the water simulations in Realflow the
particle system could be imported directly into Maya
and integrated with the bubble system. Using
Realflow to produce the water simulations makes
them more accurate and saves time as it considerably
simplifies the process. Attempting to create a fluid
simulation of a similar standard without the help of a
program such as Realflow would have been beyond
the scope of this project.

One of the main features allowing the bubble system
to work was the introduction of Maya fluid grids. It
was important to divide the volume into smaller, more
manageable sections and fluid grids offered a
convenient way of doing this. It is possible to query
positions in relation to a fluid grid voxel and each
voxel can be assigned individual values such as
velocity and density. This means it is possible to
average the velocities of a number of particles within a
defined area. These averaged values can then be
assigned to the bubble particles dependent on their
position.

2.2 Bubble Creation

Bubbles are formed in a fluid when a pocket of air is
enclosed by the liquid. This air is trapped inside the
water and forms bubbles which rise to the surface
where they burst.

The method used for the creation of the bubble
particles was inspired by the work of Muller et al.

[MÜL05]. Bubble particles are created according to
the formation of the water particles. The bubble
particles are needed in positions where air is likely to
be engulfed inside the water. In order to find these
positions, the fluid grid is used to analyse the positions
of water particles compared to surrounding empty
areas. By calculating whether the individual voxels of
the fluid grid are empty or contain water particles, the
fluid grid can then be assigned density, effectively
generating a low resolution grid of ones and zeros set
dependent on the presence of water particles.

The solution found to offer the most effective results
for the creation of new bubble particles was quite
simple. Obviously it is necessary to ensure the bubbles
are not created in random locations or actually inside
the water. If a voxel is completely empty of both water
and bubble particles then it becomes a candidate to
have a bubble particle created in its position. The

 3

voxel directly above is then checked and if there are
any water particles present there, the voxel is deemed
to be a good location to create a bubble particle.

Once a suitable position is located for a bubble
particle a new particle is created in the bubble particle
system at this position and then initialised with a
velocity depending on the surrounding fluid’s velocity
(see below).

The sizes of the bubbles are randomly set on creation.
Maximum and minimum values can easily be tweaked
to ensure the bubbles are of the right size for different
types and scales of fluid simulation. Although this is
obviously not an accurate way of replicating the
variation in sizes between the bubbles it looks
perfectly adequate and a system that calculates more
genuine sizes for the bubbles would involve merging
between bubbles. Including a deviation between the
sizes of the bubbles significantly adds to the aesthetic
quality of the simulations.

2.3 Deleting Bubbles

As a precaution against rogue bubble particles being
created, a function has been included that removes
erroneously placed bubble particles. After the bubbles
have been simulated on each frame, part of the
expression is executed checking for any escaped
particles. If a bubble is out of bounds or gets isolated
and is not within a certain distance of any water
particles, its lifespan is set to zero and it is deleted.
Each bubble particle is checked to see if there are any
water particles in its general vicinity to get a rough
idea of its location compared to the water. If the
surrounding area is empty, it can be assumed that the
particle has got removed from the rest of the
simulation, is no longer contributing and can therefore
be deleted. There are measures in place to attempt to
avoid isolated particles but due to the nature of the
simulation their occurrence is unavoidable in certain
cases.

2.4 Simulate Bubble Motion

Numerous reasons affected the decision that the
bubbles should not have an effect on the water’s
simulation. Ensuring the bubble system works with
pre-computed fluids was an important feature of this
project and also this level of interactivity between the
water and bubbles would significantly slow it down.
This allows the bubble particles to have their motion
controlled directly by the water simulation. The
bubbles’ velocity simply corresponds to the average
velocity of the surrounding water. The fluid grid came
in useful again for this process as it gave convenient
divisions within the 3d space that could be
individually analysed.

The water particles each have their own velocity,
calculated during the initial Navier-Stokes fluid
simulation in Realflow. The fluid grid enables the
system to find local particles within a set volume. The

average velocity of all of the water particles within a
single voxel is calculated and then that value is
assigned to the velocity for all of the bubble particles
located within that voxel.

If a bubble particle is positioned inside a voxel that
contains water particles, the velocity from that voxel is
transferred directly to the bubble particle. However if
the bubble particle is in a voxel empty of water
particles then the velocities from the surrounding
voxels with water in them are averaged and that
averaged value is assigned to be the velocity of that
bubble particle. In this way the bubble particles
essentially follow the movement of the fluid, being
carried along by the water’s motion as would happen
in real life.

Another factor that had to be considered for the
bubble’s motion was the buoyancy of air in water.
Due to the difference in density between water and air
(water is roughly 1000 times denser than air), pockets
of trapped air will always rise to the surface of water.
The buoyant forces on the bubbles have been
recreated simply by adding an extra value to the y-
velocity. This added velocity causes the bubbles to
rise to the surface as they would in real life. The speed
at which they rise is also affected by the size of the air
bubbles. Larger bubbles rise to the surface faster in
this system due to the radius of the bubbles being
included in the equation that dictates how much to add
onto the y-velocity. Due to the difficulty of using an
automatically computed process, the majority of
previous work on bubbles also uses an artificial
buoyancy force to make the bubbles rise to the
surface.

2.5 Bubbles at Surface

In real life an air bubble will pop if its surface gets too
thin and breaks. This issue is attempted with limited
success by Hong et al. [HON03] but is quite
complicated and does not integrate itself well with the
approach taken here. An estimation of this
phenomenon is included by simply bursting bubbles at
random. It is not possible for bubbles to burst when
surrounded by fluid so only bubbles that have reached
the fluid’s surface are considered for removal.
Another factor to be considered here is the size of the
bubble as larger bubbles have larger surface areas and
are therefore more likely to pop than smaller bubbles.
Each frame, any bubbles that appear to be at the
surface of the fluid risk being removed with those of a
larger size having a higher chance.

2.6 Converting Process to 3D

The initial work on this project was carried out using a
two-dimensional simulation as this makes it clearer to
see what is happening and the extent to which the
bubble simulation is effective. It made the process
easier to get working to begin with and simpler for
error checking.

 4

In order to convert the system to work for three-
dimensional fluid simulations the information in the z-
axis had to be considered. This process was generally
a case of adding variables to store data relating to the
extra dimension. The main rework was needed to
allow the velocities of the fluid grid to be stored in a
three-dimensional array. These values had to be stored
when averaging the velocity within a certain area.
Unfortunately MEL is unable to handle multi-
dimensional arrays so it was necessary to store all the
data in a one-dimensional array (see below).

This task turned out to be more taxing than
anticipated. Although the general logic appears to be
correct a lot of time had to be spent at the end trying to
clear up a few glitches.

2.7 Other areas

One of the main problems that emerged during
development was to ensure that the bubble particles
reacted appropriately to the edges of the container and
did not go out of bounds. A number of failsafe checks
were introduced in order to avoid this problem. There
was no way to simply dictate the boundaries and let
the bubble particles automatically react to them as
they are not dynamically simulated in that way. One
technique used to overcome this was to check the
estimated position of each bubble particle on the next
frame and to stop it moving outside the boundaries.

Another tricky part of the programming was utilising
the limited scope of MEL effectively. The entire task
of programming the system was further complicated
by the poor error handling and erratic behaviour
exerted by Maya when executing the expression. One
task that was harder to accomplish due to MEL was
the averaging of the water particles velocities within a
certain fluid grid voxel. Storing values in a multi-
dimensional array is not possible in MEL so it was
necessary to create an index that could take the x, y
and z coordinates for a voxel in the fluid grid and
calculate which entry this related to in a one-
dimensional array.

3.0 Results

In order to better understand the movement and visual
impact of air bubbles in pouring water, some video
reference was taken (Figure 1). A container was built
that was quite flat which made it much easier to
discern what was happening when the water was
poured. These tests show how prominent the bubbles
are within the water motion and how they provide a
visual representation of the waters flow.

When comparing the bubble simulations (Figure 2)
against the filmed footage of real bubbles (Figure 1)
this system proves itself to be a good approximation.
This is particularly true when comparing it with the
two-dimensional versions as it is clearer what is
happening (Figure 3). The real bubbles move so fast

that the warping and merging that is taking place is
almost unnoticeable making its omission form this
system less significant.

Figure 1: Still frame from a reference video taken to study the
bubbles motion. The Container was built to give a better
representation of the motion in a 2d simulation.

The results with the two-dimensional simulation
turned out very well but there were a few issues with
the three-dimensional simulations. The final
simulations sometimes suffer from small defects
where bubbles get stuck or clump together.

Figure 2: A 3d example of the bubble system automatically
creating bubbles to a pre-computed fluid simulation.

In the two-dimensional simulations roughly 3500
particles were used in the water simulations and about
750 bubble particles were created to imitate the
trapped air bubbles. The three-dimensional system
made use of 25000 particles for the water and created
around 5500 bubble particles. For the two-dimensional
simulations the fluid grid was 35 by 35 voxels and for
the three-dimensional simulations it was 25 by 25 by
25.

4.0 Conclusions and Future Work

The simulations resulting from this system validate the
theory that adding air bubbles enhances the visual
realism and aesthetic appeal of a water simulation.
These air bubbles are naturally created in splashing

 5

water so their inclusion in computer generated
approximations seems an obvious choice that is often
overlooked.

The bubble simulations that can be created using this
system have various imperfections. This work is a
simplification of a very complicated problem which
requires a great deal of time and complex maths to
solve realistically. Despite the fact that my method is
less physically precise than some of the previously
completed works on the subject the end product is still
successful. The bubbles flow with the fluid in a
realistic manner and they do appear to be emitted in
suitable locations where air would be trapped by the
water.

Although the effect that the air bubbles have on the
movement of the water is minimal in reality, including
this interaction would obviously enhance the overall
realism of the water flow.

A more scientifically based simulation would be
something I would be interested in pursuing but I
think I would prefer to optimise a system similar to
the one described here

Presently there is no user interface and in order to
tweak the results it is necessary to change the actual
code but it would be a simple process to add a GUI
and make the system more user-friendly, easy to use
and customisable so that an artist can tweak the way
the bubbles look. It could be developed into a useful
tool for a production environment despite its currently
limited scope.

It might be a worthwhile extension to the project to
look into the actual shading and rendering of the
bubbles and water. Especially fascinating phenomena
occur with the light at the boundaries between bubbles
as considered by Kück et al. [KÜI02].

The bubbles in this model are only modelled using
spheres and there was insufficient time to implement a
system with merging or warping. They still look
moderately convincing and a higher level of detail
would possibly only be necessary for close up shots or
slow motion viewing of the bubbles.

It would be interesting to extend this project with
more dynamic bubbles similar to those of Hong et al.
[HON03]. This might be possible if a much finer grid
was used for storing the position and velocities of the
fluid particles. A more physically based study of
bubble motion is covered by Bunner et al. [BUN99].

The problems encountered with the three-dimensional
simulations are only small glitches and could no doubt
be solved with some more time. I am slightly
disappointed not to have smoothed out these issues but
they were unexpected and were not encountered until
the last minute.

The simulation ended up being much slower than
initially desired. The code could possibly be slightly
optimised but I think the main problem is that the code
is written using Maya’s internal scripting language
MEL. This interpreted scripting language executes
much slower than a similar system would if written in
a natively compiled language such as C. Considering
time constraints, the approach I took was the most
feasible for achieving satisfying results but a C based
native implementation might have ultimately been
more flexible.

The decision to use a particle based system was
definitely the correct choice. Initially Maya fluids
were considered but it was soon discovered they are
not flexible enough to handle what would be asked of
them. Particles worked well as they can be very high
resolution, and can have extra particles added to or
removed from a system arbitrarily.

On a personal level I am pleased with the outcome of
the project. There were numerous occasions when I
felt that I would not be able to get a result resembling
bubbles at all and I encountered numerous problems
with the general strangeness of MEL syntax and
errors.

In terms of actual innovation I feel this project was a
reasonable success. I had never done any work with
either particle systems or with fluids so I had lots to
learn coming into the project. I now feel quite capable
with both areas and feel much more knowledgeable
about computer graphics research and study in
general. Similar works have been completed
elsewhere within the last couple of years, however I
couldn’t find any Maya integrated systems that would
do a similar job. Also, I approached the problem in a
different manner by looking to simulate the bubbles
only adding the result to a pre-existing water
simulation.

5.0 Acknowledgements

Eike Anderson

6.0 References

[BUN99]
BUNNER B., TRYGGVASON G.: Direct numerical
simulations of three-dimensional bubbly flows.
Physics of Fluids 11, 8 (1999)

[ENR02]
ENRIGT D., MARSCHNER S., FEDKIW R.:
Practical animation of liquids. In Proceedings of the

29
th

 annual conference on Computer graphics and

interactive techniques (2002), ACM Press, pp. 736-
744

[FOS02]
FOSTER N., FEDWICK R.: Practical animation of
liquids. In proceedings of the 28

th
 annual conference

 6

on Computer graphics and interactive techniques
(2002)

[FOS96]
FOSTER N., METAXAS D.: Realistic animation of
liquids. Graphical Models and Image Processing 58,

5 (1996)

[GLA90]
GLASSNER A.: Andrew Glassner’s notebook: Soap
bubbles. Part 2. IEEE Computer Graphics Principles

and Practice. Addison-Wesley, Reading, Mass. (1990)

[GRE04]
GREENWOOD S. T., HOUSE D. H.: Better with
bubbles: enhancing the visual realism of simulated
fluid. In SCA '04: Proceedings of 2004 ACM

SIGGRAPH/Eurographics symposium on Computer
Animation (2004), pp.163-169

[HON03]
HONG J. M., CHANG-HUN K.: Animation of
Bubbles in liquid. In Proceedings of Eurographics ’03

(2003)

[KÜI02]
KÜIK H., VOGELGSANG C., GREINER G.:
Simulation and rendering of liquid foams. In
Proceedings of Graphics Interface ’02 (2002)

[MÜL03]
MÜLLER M., SOLENTHALER B., KEISER R.,
GROSS M.: Particle-based fluid simulation for
interactive applications. Proceedings of 2003 ACM

SIGGRAPH Symposium on Computer Animation
(2003)

[MÜL05]
MÜLLER M., SOLENTHALER B., KEISER R.,
GROSS M.: Particle-based fluid-fluid interaction. In
Proceedings of 2005 ACM SIGGRAPH/Eurographics

symposium on Computer Animation (2005)

[NEX06]
NEXT LIMIT TECHNOLOGIES, 2005. Welcome to
Realflow.com. Madrid, Spain. Available from:
http://www.nextlimit.com/realflow/index.html
[Accessed 7 March 2006]

Figure 3: Two-dimensional simulation of water pouring into a glass. The top row shows the water particles pouring into the glass. The blue
fluid indicates the fluid grid used for dividing the total area allowing for more localised calculations. The bottom row shows the air bubbles
as they are added into the water model and then simulated.

 7

Appendix

MEL Source Code

//##
//# #
//# Bubble Simulation Script #
//# Joel Green #
//# Version 1.0 #
//# #
//##

//SETUP FOR USE:
//
//This system requires two particle systems and two fluid grids of equal resolution. The fluid grids should be just big enough to encompass
//the simulation of the pouring water. This code is setup for objects with specific names so it might be necessary to either re-name objects
//or alter the code
//
//The fluid grid for the water should have both density and velocity set to "static grid" and the fluid grid for the bubbles should have
//density and fluid set to "dynamic grid"
//
//The bubble particle system must have a radiusPP attribute added and have its lifespan mode set to "lifespanPP only".
//
//To cache the bubble particle data simply tick the "cache Data" button in the Attribute editor. It is important to clear or delete the expression
//before scrubinng the timeline or pressing play.

string $particle = "particleShape";
string $bubParticle = "bubParticleShape";
string $fluid = "fluidShape1";
string $bubFluid = "bubFluidShape";

main();

/*###
for each fluid particle add density and velocity to fluid grid
###*/

proc main()
{
 string $particle = "particleShape";
 string $bubParticle = "bubParticleShape";
 string $fluid = "fluidShape1";
 string $bubFluid = "bubFluidShape";

 float $res[] = `getAttr ($fluid + ".resolution")`;
 int $xRes = $res[0];
 int $yRes = $res[1];
 int $zRes = $res[2];

 int $max = ($xRes*$yRes*$zRes);

 global int $numPart[];
 global float $totVel[];

 //reset arrays to zero
 for($k=0;$k<$max;$k++)
 {
 $totVel[$k]=0;
 $numPart[$k]=0;
 }

 int $pCount;// = `getAttr ($particle + ".count")`;
 $pCount = `particle -ct -q $particle`;
 int $vX, $vY, $vZ, $cX, $cY, $cZ;
 float $pos[], $vel[], $fluidVelo[], $pPos[], $new[], $vel[], $fluV[];
 float $velX, $velY, $velZ;

 float $res[] = `getAttr ($fluid + ".resolution")`;
 int $xRes = $res[0];
 int $yRes = $res[1];
 int $zRes = $res[2];

 setFluidAttr -at "density" -cl fluid1; //remove all fluid
 setFluidAttr -at "velocity" -cl fluid1; //remove all fluid
 vector $voxel;

 for ($i = 0; $i< $pCount; $i++) //loop through the fluid particles
 {
 $pos = `getParticleAttr -at position -array true ($particle + ".pt[" + $i + "]")`;
 $vel = `getParticleAttr -at rfVelocity -array true ($particle + ".pt[" + $i + "]")`;

 $velX = $vel[0];
 $velY = $vel[1];
 $velZ = $vel[2];

 $px = $pos[0];

 8

 $py = $pos[1];
 $pz = $pos[2];

 //get which voxel particle is in
 $voxel = `fluidVoxelInfo -voxel $px $py $pz fluid1`;

 $vX = $voxel.x;
 $vY = $voxel.y;
 $vZ = $voxel.z;

 //add density to fluid
 setFluidAttr -at "density" -fv 1 -xi $vX -yi $vY -zi $vZ fluid1;

 $fluV = `getFluidAttr -at "velocity" -xi $vX -yi $vY -zi $vZ fluid1`; //1 or 0 if fluid or not

 //set velocity in fluids
 fluidVelocity($vX, $vY, $vZ, $velX, $velY, $velZ); //average fluid velocity
 }

 //loop through all voxels and assign average velocities

 for($cX=0;$cX<$xRes;$cX++)
 {
 for($cY=0;$cY<$yRes;$cY++)
 {
 for($cZ=0;$cZ<$zRes;$cZ++)
 {
 averageVel($cX, $cY, $cZ);
 }
 }
 }

 simulate(); //simulate bubble motion (probably badly)
}

/*###
adding velocity to fluid with averaging - use 3 arrays to store av. velocities for each voxel and extra array to store num of part in each voxel
##*/

proc fluidVelocity(int $vX, int $vY, int $vZ, float $velX, float $velY, float $velZ)
{
 string $fluid = "fluidShape1";
 float $res[] = `getAttr ($fluid + ".resolution")`;
 float $temp = 0, $x, $y, $z;
 int $xRes = $res[0];
 int $yRes = $res[1];
 int $zRes = $res[2];
 int $xindex, $yindex, $zindex, $numP, $thing;
 int $max = ($xRes*$yRes*$zRes);

 global float $totVel[];
 global int $numPart[];

 float $xtot;
 float $ytot;
 float $ztot;

 //get array index
 $thing = (($xRes*$xRes*$vX)+(($xRes*$vY)+$vZ));

 $xindex = $thing;
 $yindex = $thing + 1;
 $zindex = $thing + 2;

 //add 1 to appropriate part of matrix indicating particle inside corresponding voxel
 $temp = $numPart[$thing];
 $numPart[$thing] = $temp + 1;

 $numP = $numPart[$thing];

 $xtot = (($totVel[$xindex])+$velX);
 $ytot = (($totVel[$yindex])+$velY);
 $ztot = (($totVel[$zindex])+$velZ);

 $totVel[$xindex] = $xtot;
 $totVel[$yindex] = $ytot;
 $totVel[$zindex] = $ztot;

}

/*##
average the velocities in fluid grid voxels
###*/

proc averageVel(int $vX, int $vY, int $vZ)
{
 string $fluid = "fluidShape1";

 float $res[] = `getAttr ($fluid + ".resolution")`;

 9

 int $xRes = $res[0];
 int $yRes = $res[1];
 int $zRes = $res[2];
 int $max = ($xRes*$yRes*$zRes);

 global float $totVel[];
 global int $numPart[];

 int $xindex, $yindex, $zindex, $numP, $thing;
 float $x, $y, $z, $tX, $tY, $tZ;

 $thing = (($xRes*$xRes*$vX)+(($xRes*$vY)+$vZ));

 $xindex = $thing;
 $yindex = $thing + 1;
 $zindex = $thing + 2;

 $numP = $numPart[$thing];

 if($numP!=0)
 {
 $tX = ($totVel[$xindex]);

 $tY = ($totVel[$yindex]);
 $tZ = ($totVel[$zindex]);

 $x = ($tX/$numP);
 $y = ($tY/$numP);
 $z = ($tZ/$numP);

 //assign average velocities to voxels
 setFluidAttr -at "velocity" -vv $x $y $z -xi $vX -yi $vY -zi $vZ fluid1;
 }
 else
 {
 setFluidAttr -at "velocity" -vv 0 0 0 -xi $vX -yi $vY -zi $vZ fluid1;
 }

}

/*##
delete rubbish bubble particles
###*
/

proc bubbleDelete()
{
 string $particle = "particleShape";
 string $bubParticle = "bubParticleShape";
 string $fluid = "fluidShape1";
 string $bubFluid = "bubFluidShape";
 int $pCountBub = `particle -ct -q $bubParticle`;
 vector $bubVoxel;
 int $vX, $vY, $vZ, $vwX, $vwY, $vwZ, $topY, $botY;
 float $fluidFull[], $active[], $topEmpty[], $botEmpty[], $rad[], $randDel;
 int $delete, $topDel, $botDel;
 float $res[] = `getAttr ($fluid + ".resolution")`;
 int $xRes = $res[0];
 int $yRes = $res[1];
 int $zRes = $res[2];

 for ($i = 0; $i< $pCountBub; $i++) //cycle thorugh bubble particles
 {
 //DELETE RUBBISH BUBBLE PARTICLES

 $active = `getParticleAttr -at lifespanPP -array true ($bubParticle + ".pt[" + $i + "]")`;
 $rad = `getParticleAttr -at radiusPP -array true ($bubParticle + ".pt[" + $i + "]")`;

 $fluidFull[0] = 0;
 $fluidFull = `getFluidAttr -at "density" -xi $vX -yi $vY -zi $vZ fluid1`; //1 or 0 if fluid or not

 $pos = `getParticleAttr -at position -array true ($bubParticle + ".pt[" + $i + "]")`;

 $px = $pos[0];
 $py = $pos[1];
 $pz = $pos[2];

 //get which voxel
 $bubVoxel = `fluidVoxelInfo -cb -voxel $px $py $pz bubFluid`;

 $vX = $bubVoxel.x;
 $vY = $bubVoxel.y;
 $vZ = $bubVoxel.z;

 if($active[0] != 0) //if particle not dead
 {
 if($pos[1] < 0) //if below bottom of area -> KILL

 10

 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at lifespanPP -fv 0; //set lifespan to 0
 }
 else if($pos[0]<-2.2 || $pos[0]>2.2)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at lifespanPP -fv 0; //set lifespan to 0
 }
 else if($pos[2]<-2.2 || $pos[2]>2.2)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at lifespanPP -fv 0; //set lifespan to 0
 }
 else
 {

 if($fluidFull[0]!=0) //if does have fluid in square
 {

 }
 else
 {

 $delete = 0;
 for($wX=-1;$wX<=1;$wX++) //cycle x from either side
 {
 for($wY=-1;$wY<=1;$wY++) //cycle y either side
 {
 for($wZ=-1;$wZ<=1;$wZ++) //cycle z either side
 {
 $vwX = ($vX+$wX);
 $vwY = ($vY+$wY);
 $vwZ = ($vZ+$wZ);

 //1 or 0 if fluid or not
 $fluidFull = `getFluidAttr -at "density" -xi $vwX -yi $vwY -zi $vwZ fluid1`;

 if($fluidFull[0]!=1) //if doesn't have fluid in square
 {
 $delete += 1;
 }
 }
 }
 }

 if($delete >= 20) //if no fluid in any surrounding squares
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at lifespanPP -fv 0; //set lifespan to 0
 }
 else //check if on surface - no fluid above, all fluid below
 {
 $topDel = 0;
 $botDel = 0;
 for($wX=-1;$wX<=1;$wX++) //cycle x from either side
 {
 for($wZ=-1;$wZ<=1;$wZ++) //cycle z either side
 {
 $vwX = ($vX+$wX);
 $vwZ = ($vZ+$wZ);
 $topY = ($vY+1);
 $botY = ($vY-1);

 $topEmpty = `getFluidAttr -at "density" -xi $vwX -yi $topY -zi $vwZ fluid1`;
 $botEmpty = `getFluidAttr -at "density" -xi $vwX -yi $botY -zi $vwZ fluid1`;

 if($topEmpty[0]!=1) //if doesn't have fluid in square
 {
 $topDel += 1;
 }
 if($botEmpty[0]!=0) //if doesn't have fluid in square
 {
 $botDel += 1;
 }
 }
 }

 if($topDel >= 6 && $botDel >= 6) //if at surface
 {
 $randDel = rand($rad[0], 0.1); //radii is between 0.02 and 0.07
 //0.09 is abritary value that might give nice percentage deleted
 if($randDel>0.09)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at lifespanPP -fv 0; //set lifespan to 0
 }
 }
 }
 }

 11

 }
 }
 }
 bubbleCreate();
}

/*###
creation of new bubble particles
##*/

proc bubbleCreate()
{
 string $particle = "particleShape";
 string $bubParticle = "bubParticleShape";
 string $fluid = "fluidShape1";
 string $bubFluid = "bubFluidShape";

 int $pCountBub = `particle -ct -q $bubParticle`;
 float $res[] = `getAttr ($fluid + ".resolution")`;
 int $xRes = $res[0];
 int $yRes = $res[1];
 int $zRes = $res[2];
 float $fluidEmpty[];
 float $bubEmpty[];
 float $fluidVel[], $fluVelAve[];
 vector $voxelPos;
 float $vpX, $vpY, $vpZ, $rad;
 int $yup=0, $wX, $wY, $wZ, $aX, $aY, $aZ;
 int $vX, $vY, $vZ, $vwX, $vwY, $vwZ, $avwX, $avwY, $avwZ;
 int $div, $above;

 for($vX=1;$vX<($xRes-2);$vX++) //loop through (nearly) all voxels (not edge ones) cos don't want to create bubbles right at edges
 {
 for($vY=1;$vY<($yRes-2);$vY++)
 {
 for($vZ=1;$vZ<($zRes-2);$vZ++)
 {
 $voxelPos = `fluidVoxelInfo -vc -xIndex $vX -yIndex $vY -zIndex $vZ fluid1`; //position of middle of voxel
 $fluidEmpty = `getFluidAttr -at "density" -xi $vX -yi $vY -zi $vZ fluid1`;//1 or 0 if fluid or not
 $bubEmpty = `getFluidAttr -at "density" -xi $vX -yi $vY -zi $vZ bubFluid`;//1 or 0 if bubble or not

 //put velocity of current voxel in $fluidVel
 $fluidVel = `getFluidAttr -at "velocity" -xi $vX -yi $vY -zi $vZ -lf fluid1`;

 $div = 0;

 //MAKE BUBBLES
 if(($fluidEmpty[0] != 1) && ($bubEmpty[0] != 1)) //if square is empty of fluid and bubble
 {
 $yup = 0;
 $above=0;

 //check the 9 voxels above
 for($aX=-1;$aX<=1;$aX++)
 {
 for($aZ=-1;$aZ<=1;$aZ++)
 {
 $avwX = ($vX+$aX);
 $avwY = ($vY+1);
 $avwZ = ($vZ+$aZ);

 $fluidEmpty = `getFluidAttr -at "density" -xi $avwX -yi $avwY -zi $avwZ fluid1`;

 if($fluidEmpty[0]!=0) //if there is fluid in voxel
 {
 $above +=1;
 }

 }
 }

 if($above>=6) //if more than 6 of 9 voxels above have fluid can create bubble
 {
 //$fluidEmpty = `getFluidAttr -at "density" -xi $vwX -yi $vwY -zi $vwZ fluid1`;

 //reset values
 $fluVelAve[0] = 0;
 $fluVelAve[1] = 0;
 $fluVelAve[2] = 0;

 $yup = 1;

 //get average velocity of surrounding voxels
 for($aX=-1;$aX<=1;$aX++) //cycle x from either side
 {
 for($aY=-1;$aY<=1;$aY++) //cycle y either side
 {
 for($aZ=-1;$aZ<=1;$aZ++) //cycle z either side
 {

 12

 //fluid co-ord of voxel to test
 $vwX = ($vX+$aX);
 $vwY = ($vY+$aY);
 $vwZ = ($vZ+$aZ);

 $fluidEmpty = `getFluidAttr -at "density" -xi $vwX -yi $vwY -zi $vwZ fluid1`;

 if($fluidEmpty[0]!=0) //if there is fluid in voxel
 {
 $div +=1;
 $fluVel = `getFluidAttr -at "velocity" -xi $vwX -yi $vwY -zi $vwZ fluid1`;
 $fluVelAve[0] += $fluVel[0];
 $fluVelAve[1] += $fluVel[1];
 $fluVelAve[2] += $fluVel[2];
 }
 }
 }
 }

 if($yup==1) //if good square for making of bubble eg/ if matches criteria
 {
 //position of middle of voxel
 $voxelPos = `fluidVoxelInfo -vc -xIndex $vX -yIndex $vY -zIndex $vZ fluid1`;

 //square will always have no fluid therefore need av velocity from surrounding voxels
 $vpX = $voxelPos.x;
 $vpY = $voxelPos.y;
 $vpZ = $voxelPos.z;

 //Average surrounding velocities for x y and z components
 $fluVelAve[0] /= $div;
 $fluVelAve[1] /= $div;
 $fluVelAve[2] /= $div;

 //emit new particle
 $rad = rand(0.02,0.1);
 emit -object bubParticle -position $vpX $vpY $vpZ -at lifespanPP -fv 1000 -at velocity -vv $fluVelAve[0]
$fluVelAve[1] $fluVelAve[2] -at radiusPP -fv $rad;
 }
 }
 }
 }
 }
 }
 bubbleFluid();
}

/*##
cycle through bubble particles and set density to 1 for each voxel with particle
##*/

proc bubbleFluid()
{
 string $particle = "particleShape";
 string $bubParticle = "bubParticleShape";
 string $fluid = "fluidShape1";
 string $bubFluid = "bubFluidShape";
 int $pCountBub;
 $pCountBub = `particle -ct -q $bubParticle`;

 setFluidAttr -at "density" -cl bubFluid;
 vector $bubVoxel;
 int $vX, $vY, $vZ;
 float $pos[];

 for ($i = 0; $i< $pCountBub; $i++) //cycle thorugh bubble particles
 {
 float $active[] = `getParticleAttr -at lifespanPP -array true ($bubParticle + ".pt[" + $i + "]")`;
 if($active[0]!=0) //if not already killed
 {
 //SET DENSITY FOR BUBBLE FLUID WHERE BUBBLE PARTICLE FOUND

 $pos = `getParticleAttr -at position -array true ($bubParticle + ".pt[" + $i + "]")`;

 $px = $pos[0];
 $py = $pos[1];
 $pz = $pos[2];

 //get which voxel
 $bubVoxel = `fluidVoxelInfo -cb -voxel $px $py $pz bubFluid`;

 $vX = $bubVoxel.x;
 $vY = $bubVoxel.y;
 $vZ = $bubVoxel.z;

 //add density
 setFluidAttr -at "density" -fv 1 -xi $vX -yi $vY -zi $vZ bubFluid;
 }
 }

 13

 select -cl; //deselects most recent bub particle at end of frame
}

/*##
simulate bubbles
##*/

proc simulate()
{
 string $bubParticle = "bubParticleShape";
 int $i, $vXb, $vYb, $vZb, $pxb, $pyb, $pzb;
 int $pCountBub;
 $pCountBub = `getAttr ($bubParticle + ".count")`;
 vector $bubVoxel, $voxelPos;
 float $fluVelb[], $fluDens[], $posb[], $velSur[], $radius[];
 float $fluVelAve[];
 float $xCheck, $yCheck, $zCheck, $xAveCheck, $yAveCheck, $zAveCheck, $yBuoyancy, $xBuoyancy, $aVel, $vpX, $vpY, $vpZ, $vwX, $vwY,
$vwZ;

 for ($i = 0; $i< $pCountBub; $i++) //cycle thorugh bubble particles
 {
 //work out what voxel particle is in
 $posb = `getParticleAttr -at position -array true ($bubParticle + ".pt[" + $i + "]")`;

 $pxb = $posb[0];
 $pyb = $posb[1];
 $pzb = $posb[2];

 //get which voxel
 $bubVoxel = `fluidVoxelInfo -cb -voxel $pxb $pyb $pzb bubFluid`;

 //x and y voxel components holding current particle
 $vXb = $bubVoxel.x;
 $vYb = $bubVoxel.y;
 $vZb = $bubVoxel.z;

 //reset values
 $fluVelAve[0] = 0;
 $fluVelAve[1] = 0;
 $fluVelAve[2] = 0;
 $div=0;

 $fluVelb = `getFluidAttr -at "velocity" -xi $vXb -yi $vYb -zi $vZb fluid1`;
 $fluDens = `getFluidAttr -at "density" -xi $vXb -yi $vYb -zi $vZb fluid1`; //1 or 0 if fluid or not

 if($fluDens[0]!=0) //if there is fluid in voxel
 {
 $xCheck = ($posb[0] + ($fluVelb[0]/12.5)); //pos + 2*velo per frame because velocity moves particle before checked
 $yCheck = ($posb[1] + ($fluVelb[1]/12.5)); //pos + 2*velo per frame
 $zCheck = ($posb[2] + ($fluVelb[2]/12.5));

 int $surround =0;
 $velSur[0]=0;
 $velSur[1]=0;
 $velSur[2]=0;

 for($wX=-1;$wX<=1;$wX++) //cycle x from either side
 {
 for($wY=-1;$wY<=1;$wY++) //cycle y from either side
 {
 for($wZ=-1;$wY<=1;$wY++) //cycle z
 {
 //x, y and z voxel components surrounding current particle
 $vwX = ($vXb+$wX);
 $vwY = ($vYb+$wY);
 $vwZ = ($vZb+$wZ);

 //1 or 0 if fluid or not
 $fluDens = `getFluidAttr -at "density" -xi $vwX -yi $vwY -zi $vwZ fluid1`;
 if($fluDens[0]!=0)
 {
 $surround +=1;
 }
 }
 }
 }

 //BUOYANCY

 if($surround>=20) //if almost totally surrounded by fluid - arbitary value at the mo
 {
 $radius = `getParticleAttr -at radiusPP ($bubParticle + ".pt[" + $i + "]")`;
 //$aVel = (abs($velSur[1])/9);
 //x is arbritary value to make bubbles rise. radius means bigger = faster
 //$yBuoyancy = $fluVelb[1]+((25/$aVel)*$radius[0]);
 $yBuoyancy = $fluVelb[1]+(100*$radius[0]);
 $xBuoyancy = (1.5*$fluVelb[0])+(0.1*(sin(frame + $i)));

 if($posb[0]<-2.0 || $posb[0]>2.0) //IF TOWARD EDGES IN X
 {

 14

 if($posb[2]<-2.0 || $posb[2]>2.0) //IF TOWARD EDGES IN Z
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv -0.5 $yBuoyancy -0.5; //set velocity
 }
 else
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv 0 $yBuoyancy $fluVelb[2]; //set velocity
 }
 }
 else if($posb[2]<-2.0 || $posb[2]>2.0) //IF TOWARD EDGES IN Z
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] $yBuoyancy 0; //set velocity
 }
 else if($posb[1]<0.2) //IF NOT NEAR EDGES IN X OR Z BUT NEAR BOTTOM
 {
 if($fluVelb[1]>-0.5) //if y-vel is not too downward strong then buoyancy it
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] $yBuoyancy $fluVelb[2]; //set velocity
 }
 else
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] 0.5 $fluVelb[2]; //set velocity
 }
 }
 else //IF NOT IN VERY EDGE VOXELS
 {
 //IF GOING TO BE OUTSIDE BOUNDS ON NEXT FRAME
 if(($xCheck<-2.2)||($xCheck>2.2)) //x component outside boundaries
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv ($fluVelb[0]/2) $yBuoyancy $fluVelb[2]; //set velocity
 }
 if($yCheck<0) //y component
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] ($fluVelb[1]/2) $fluVelb[2]; //set velocity

 }
 if(($zCheck<-2.2)||($zCheck>2.2))
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $xBuoyancy $yBuoyancy ($fluVelb[2]/2); //set velocity
 }
 else //NOT NEAR EDGES - NO REAL RISK OF GOING OUT OF BOUNDS
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $xBuoyancy $yBuoyancy $fluVelb[2]; //set velocity
 }
 }

 }
 //NON-BUOYANT BEHAVIOUR

 else
 {

 if($posb[0]<-2.0 || $posb[0]>2.0)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv 0 $fluVelb[1] 0; //set velocity
 }
 else if($posb[1]<0.2)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] 0 0; //set velocity
 }
 else
 {
 //checking for boundaries against position for next frame
 if(($xCheck<-2.2)||($xCheck>2.2)) //x component outside boundaries
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv ($fluVelb[0]/2) $fluVelb[1] $fluVelb[2]; //set velocity
 }
 if(($zCheck<-2.2)||($zCheck>2.2))
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] $fluVelb[1] ($fluVelb[2]/2); //set velocity
 }
 if($yCheck<0) //y component
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] ($fluVelb[1]/2) $fluVelb[2]; //set velocity
 }
 else

 15

 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelb[0] $fluVelb[1] $fluVelb[2]; //set velocity
 }
 }
 }
 }
 else //not in voxel with fluid
 {
 for($wX=-1;$wX<=1;$wX++) //cycle x from either side
 {
 for($wY=-1;$wY<=1;$wY++) //cycle y from either side
 {
 for($wZ=-1;$wZ<=1;$wZ++)
 {
 //x and y voxel components surrounding current particle
 $vwX = ($vXb+$wX);
 $vwY = ($vYb+$wY);
 $vwZ = ($vZb+$wZ);

 //1 or 0 if fluid or not
 $fluDens = `getFluidAttr -at "density" -xi $vwX -yi $vwY -zi $vwZ fluid1`;

 if($fluDens[0]!=0) //if there is some density in voxel then add 1 to $div
 {
 $div +=1;

 $fluVelb = `getFluidAttr -at "velocity" -xi $vwX -yi $vwY -zi $vwZ fluid1`;
 //print ("fluVelsurround " + $i + "= "+$fluVelb[0]+"\n");

 $fluVelAve[0] += $fluVelb[0];
 $fluVelAve[1] += $fluVelb[1];
 $fluVelAve[2] += $fluVelb[2];
 }
 }
 }
 }

 //avoid dividing by 0 errors

 if($div==0)
 {
 //delete - should never happen but prob will
 }
 else
 {
 //Average surrounding velocities for x y and z components
 $fluVelAve[0] /= $div;
 $fluVelAve[1] /= $div;
 $fluVelAve[2] /= $div;

 $xAveCheck = ($posb[0] + ($fluVelAve[0]/12.5));
 $yAveCheck = ($posb[1] + ($fluVelAve[1]/12.5));
 $zAveCheck = ($posb[2] + ($fluVelAve[2]/12.5));

 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv 0 $fluVelAve[1] $fluVelAve[2]; //set velocity

 if($posb[0]<-2.0 || $posb[0]>2.0)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv 0 $fluVelAve[1] $fluVelAve[2]; //set velocity
 }
 else if($posb[1]<0.2)
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelAve[0] 0 $fluVelAve[2]; //set velocity
 }
 else
 {
 if(($xAveCheck<-2.2)||($xAveCheck>2.2)) //x component outside boundaries
 {
 if($yAveCheck>0)//y component
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv ($fluVelAve[0]/2) $fluVelAve[1] $fluVelAve[2]; //set velocity
 }
 }
 if($yAveCheck<0)//y component
 {
 if(($xAveCheck>-2.2)||($xAveCheck<2.2)) //x component outside boundaries
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelAve[0] ($fluVelAve[1]/2) $fluVelAve[2]; //set velocity
 }
 }
 else if((($xAveCheck<-2.2)||($xAveCheck>2.2)) && (($zAveCheck<-2.2)||($zAveCheck>2.2)) && ($yAveCheck<0))
 {
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv 0 0 0; //set velocity

 16

 }
 else
 {
 //$fluVelAve[1]+=4; //buoyancy
 select ($bubParticle + ".pt[" + $i + "]");
 setParticleAttr -at velocity -vv $fluVelAve[0] $fluVelAve[1] $fluVelAve[2]; //set velocity
 }
 }
 }
 }
 }
 bubbleDelete();
}

