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1. Abstract

Genetic algorithms have widely been used to evolve the rules of cellular automata. For this to take place, a suitable fitness function is required in order to allow the genetic algorithm to manipulate the rules of the cellular automata towards a desired behavior.  This paper researches how rules for aesthetically interesting cellular automata can be evolved using genetic algorithms. The cellular automata will be evolved interactively, using aesthetic opinion of the cellular automata as a fitness function.

2. Introduction

Cellular automata and genetic algorithms have both been used in a variety of applications since their invention some decades ago.  Cellular automata are very useful for modelling mathematical processes and genetic algorithms have been proven to be powerful and effective search algorithms.  

Cellular automata work from a grid of cells which are seen to be either alive or dead.  By colouring the cells accordingly, patterns emerge naturally as part of the process. Genetic algorithms need to be forced into producing an image, but the results from this have been a variety of rich and interesting imagery.   However, very little research has been put into the topic of cellular automata’s own aesthetic value, as they are primarily used for creating models of complex mathematical problems. 

The combination of the two has only really been used to evolve the rules of a cellular automaton in order to help solve a mathematical problem.  This paper is concerned with how to create cellular automata that have a strong aesthetic appeal with the aid of genetic algorithms to gain these results.  In order to do this, research into the two areas is essential in order to obtain a better understanding of how the two separate subjects can be bought together efficiently. Also an interactive fitness function that works from the aesthetic strength is required for the evolution of the automata. 

2.1. Cellular Automata

Cellular automata date back to the 1940’s and were originally conceived by Stanislaw Ulam.  Ulam divided the space/ area of interest into a grid of cells.  Each cell could then have one of two states, ON or OFF.  Starting from an initial population in the grid, a new generation of cells was determined from a set of rules which looked at each cell’s neighbours to decide whether it would be set to ON or OFF.

One of the leading researchers today in the subject of cellular automata is Stephen Wolfram.  Wolfram has published many books as well as detailed online documentation into his work.  Much of this research is based on Wolfram’s findings as well as numerous other online resources. (Wolfram, 1982) (Wolfram, 1983) (Wolfram and Packard, 1985) (Eck, No Date).

A cellular automaton is a system made up of many discrete cells.  Each cell has to be in one of a finite number of states.  It’s state is determined using a fixed set of rules which are dependent on the neighbouring cells of a set proximity

To explain this better, we can use a one-dimensional cellular automata where each cell can be in only two states. Either ON (black) or OFF (white).  One-dimensional cellular automata means that instead of using a two dimensional grid of cells, you concentrate on a single row.  This is illustrated below in figure 2.1.

[image: image1.jpg]Figure 2.1 - In its initial state the row of cells only has one cell in the middle of the row set to ON

In this example, we shall use three neighbours to determine the rules.  This means we are concerned with the two immediate neighbours to the left and right, and the cell itself.  Using three neighbours there are only eight possible combinations for the rules.  The output of these rules is obviously up to the architect’s discretion.

In this example the rules are as follows:

1. If the cell is OFF and both its neighbours are OFF then the cell remains OFF

2. If the cell is ON and both its neighbours are ON then the cell is turned OFF

3. In all other cases the cell is turned ON 

For computation purposes it can be useful to think of the cell states as either a zero for OFF or a one for ON and this is included with the rules in figure 2.2
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in  -  0 0 0   0 0 1   0 1 0   0 1 1   1 0 0   1 0 1   1 1 0   1 1 1

out -    0       1       1       1       1       1       1       0

Figure 2.2 – The chosen set of rules for the cellular automata

In general, if each cell can be one of a possible K states determined from it’s n neighbours (including itself) then there are Kn possible combinations for the cell and it’s three neighbours to be in. Developing this further, we can say that the total number of sets of rules is the number of states, raised to the power of Kn.  Using C to indicates the number of combinations and R the number of rules we can determine the following.  This is also worked through with our example where K = 2 and n=3

C = Kn      



C = 23







C = 8

R = KC




R = 28

R = 256

This shows that from our very simple cellular automata there are already 256 possible rules. An important point to note is that the cells at either end of the row only have one neighbour on either their left, or right, so for the side on which they have no neighbour, the cell at the opposite end should be used.

Applying these simple rules to our single row would give the results shown in 2.3 for the second row.  Apart from the three examples shown, the first rule is applied to the rest of the row where all three cells are OFF (white) and the resulting cell is also OFF (white).

[image: image76.png]
Rule 2 turns the cell below on

[image: image77.png][image: image78.png]Rule 3 turns the cell below on

Rule5 turns the cell below on

Figure - 2.3 - Rules2, 3 and 5 are applied to the first row as shown, all other cells are subject to rule 1

When the process is repeated across many rows, displayed one under another, a pattern is formed (Figure 2.4). This pattern is determined by the rules chosen and in our case is one of the more interesting automaton using one dimensional rules.  It bears much resemblance to another mathematical model, Pascal’s triangle.

[image: image79.png]Figure 2.4 One-dimensional cellular automaton produced from our rules

From this starting point, the theories can be rapidly expanded.  Initially you could create more states, therefore enabling cells to be multiple colours.  Instead of black and white you could use a variation of grayscale colours ranging from black through to white.  Another way of expanding is to add extra dimensions.

Two dimensional cellular automata

With the theory of one-dimensional cellular automata, it is easy to convert this into two dimensions.  With two-dimensional cellular automata, instead of concentrating on one row of cells at a time, we are concerned with a grid of cells.  Therefore the neighbours can exist either to the left, right, top, bottom or diagonally from a cell.  This can be interpreted in a number of ways and figure 2.5 shows a, a) five neighbour square and, b) a nine neighbour  square.  

[image: image80.jpg]
Figure 2.5 – Two types of configuration for rules in two-dimensional cellular automata. a) a five neighbour square and b) a nine neighbour square

Despite the larger neighbourhood area, the theories of two-dimensional cellular automata are the same as one-dimensional cellular automata.  Any combination of the surrounding cells is considered a rule for the state of the center cell. However, the number of rules is dramatically increased as the number of neighbours grows.  Referring back to the simple formulae used with one-dimensional automata we can now increase the number of neighbours to fit two-dimensions.

5 neighbour square 

9 neighbour square

K = 2




K = 2




N = 5




N = 9


C = 25 




C = 29 

C = 32




C = 512

R = 232 




R = 2512
R = 4294967296


R ≈ 10154
This illustrates how when the number of neighbours increases so does the possible number of rules in an exponential manner.  If you were to increase the number of states from two (black or white) to a range of colours then these numbers would become even dramatically larger.

There are other alternatives as to the way in which to calculate the rules.  With outer totalistic rules, cells states are determined from the sum of the previous generation’s neighbours.  The most famous of these outer totalistic rules is know as ‘Conway’s game of life’.

Conway’s Game of Life

[image: image81.jpg]The game of life is not a game in the sense that there are no players, winning or losing.  Once the pieces have been set up the rules determine everything that happens later.  It was invented by John Conway with details published in 1970 (Gardner, 1970). The rules were carefully chosen after much trial and error as some rules caused the all the cells to become set either zero or one, or the game reached a stable state too soon.  Essentially there are only three rules (Figure 2.6).

Figure 2.6 - The three rules of Conway’s game of life.  The cell in concern is always the center cell of the grid

The results from these three simple rules are quite remarkable. From a small initial population dynamic cellular automata’s were produced which would appear to move through space on the grid. Certain starting points would were found to give more interesting patterns but in almost all instances the automaton would reach a stable state after many generations. However, the idea of this dynamic cellular automata gained great interest in mathematical circles and is still one of the most programmed games to date.  Figure 2.7 shows generations of Conway’s game of life taken from internet (Martin E, No Date).

[image: image82.jpg]
Figure 2.7  - Conway’s game of life at stages of 25 generations. This illustrates the dynamic nature of this kind of cellular automaton - http://www.bitstorm.org/gameoflife/

Both Conway’s Game of Life and other automata have been shown to be a powerful pattern making utility.  However, each automaton needs to have its rules defined for it before its creation and this is a time consuming process.  Also, many rules lead to a poor aesthetic output. With large numbers of possible rules, a method is needed to generate rules during the program run time.

2.2. Genetic Algorithms
John Holland and his colleagues at the University of Michigan developed genetic algorithms in the 1970’s.  This is acknowledge to be the first research into genetic algorithms and was mainly theoretical. In the early 1980’s, other scientists and mathematicians began to implement these theories. They were initially developed in order to solve large mathematical problems and regularly used in areas of scientific research such as simulating biological processes. Their design is based upon the theories of evolution, hence their other name evolutionary algorithms.  Much of the following research is based upon the research of Goldberg (1989 p 1-14).

John Holland’s core idea to the success of genetic algorithms was based upon robustness. In their development he was trying to combine efficiency with effectiveness. Traditional search methods fall down in their robustness in either of these two criteria.  Traditional methods can be put into three categories. 


Calculus based methods

A calculus-based method can be either direct or indirect.  Indirect methods seek extremities by solving sets of non linear equations in order to set the gradient of the objective function to zero. Direct methods pick points on the curve, and the curve is then climbed in the steepest direction in order to find the extremity.  Useful as these methods are, measuring their robustness against Goldberg’s criteria soon shows their flaws.  Their primary weakness is they seek local extremities as shown in figure 2.8. If you were to start on one of the smaller hills, when you reached its peak you might be led to believe this was your target, causing you to miss the optimal result.  With a curve that has multiple peaks this would lead to the method being very ineffective and if you were to repeat the search from multiple starting points to compensate for this, then the method becomes inefficient.

[image: image83.png]Figure 2.8 -  A population of points that had multiple peaks may cause a calculus based method to converge on point A and miss point B due to searching local extremities

Linear/ Enumerative Based methods

This search is the most human like search.  The concept essentially being that the search algorithm looks at the objective function values at every point within the search space until the optimal value is found.  Although this would work on a small scale efficiently, as the search space is enlarged, the process becomes rapidly inefficient due to the time required to traverse through every value.

Random Searches

Random searches do overcome some of the problems associated with calculus and enumerative based search methods, but when thought of in a broader sense they still hold the problems associated with an enumerative search.  Over a large search space the actual efficiency is no better than an linear search as even though you may come across the optimal value relatively quickly, you could not be sure as to whether it was correct until the rest of the search space has been evaluated.

[image: image84.png]From the evaluation of these methods we can only say that traditional methods are not robust.  All three fail to combine effectiveness and efficiency on a wide scale.  This is illustrated in figure 2.9 which shows the efficiency that we would expect from a robust system compared to that of the three methods previously discussed

Figure 2.9 – Robust systems give a high performance of efficiency over all types of problems where as a specialized or calculus scheme peaks well on certain problems. Meanwhile, random and enumerative searches are generally low in efficiency

So the question remains why are genetic algorithms superior to traditional search methods?  A student of John Holland’s, David E. Goldberg supplies the following four reasons (Goldberg, 1989, p7).

‘1. 
Genetic Algorithms work with a coding of the parameter set, not the parameters themselves.

2.
Genetic Algorithms search from a population of points, not a single point

3.
Genetic Algorithms use payoff (objective function) information, not derivatives or other auxiliary knowledge.

4. 
Genetic Algorithms use probabilistic transition rules, not deterministic rules.’
To explain how this works in practice we will work through a simple example showing the key stages to a genetic algorithm. For purpose of this explanation we will say that we are using the algorithm to search for the optimal value of the following function:

f(x) = x2
The search space we will use is that where x can range from 0 to 31.

The first point made by Goldberg is that ‘Genetic Algorithms work with a coding set of the parameters, not the parameters themselves’, (Goldberg, 1989, p7).  In artificial systems these are known as the strings or individuals but in biological systems would be referred to as chromosomes.  A genetic algorithm needs not know the meaning of the information which it is searching through.  Generally the actual values of concern will be coded into another form, in our case, binary number system.  Our values of x can be easily converted into binary strings

i.e.
00000 = 0


00001 = 1


00010 = 2

00011 = 3

        :

        :

11110 = 30

11111 = 31

So a genetic algorithm would start by creating a randomly generated set of strings.   The entire group of strings in artificial systems can be referred to as the structure, or population, where as in biological systems is referred to as the phenotype.  The algorithm need not know at first the values of the strings it has created but instead just create a population of strings to work with. This illustrates Goldberg’s second statement, ‘Genetic Algorithms search from a population of points, not a single point.’, (Goldberg, 1989, p7). 

Once the initial population has been obtained the algorithm can really begin to work.  The strings can be decoded into their values of x.  Once this has been done, their values can be passed into the objective or fitness function, f(x) = x2.  The value returned by this function is referred to as the fitness of the string, hence the name fitness function.  It is from this value that future decisions are made.  Darwin’s theories of evolution are heavily based upon survival of the fittest, and for the string to be copied, and survive to the next generation, the stronger its fitness from this function, the better its chances.  In our example the comparison is quite simple that the larger the number returned, the stronger or fitter the string is. This is echoed by Goldberg’s third statement ‘Genetic Algorithms use payoff (objective function) information, not derivatives or other auxiliary knowledge., (Goldberg, 1989, p7).  

The last process is how the strings are to be copied over into the new generation.  Goldberg’s final statement was Genetic Algorithms use probabilistic transition rules, not deterministic rules.’, (Goldberg, 1989, p7).  Once all strings have been decoded and evaluated through the fitness function they are selected for survival directly from their fitness.  This can be thought of as a weighted roulette wheel. Say we had an initial population of 6, it might look like Table 2.1.  It is worth noting that in a real situation the population used would probably be much greater that 6.

No. 
String
 x

Fitness
Percentage 







f(x)=x2
 of total


____________________________________________________

1
00101

 5

   25

  2.05

2
10010

 18 

   324
  26.51


3
00111

 7

   49

  4.01

4
11100

 28

   784
  64.16

5
00010

 2

   3

  0.33

6
00110

 36

   36
        2.95

__________________________________________________________

Total




   1222
  100.00

Average Fitness                  203.66


__________________________________________________________

Table 2.1 – a population of 6 strings

[image: image85.png]The column on the right indicates what percentage of the total fitness each string has contributed. In terms of the weighted roulette wheel it would look similar to figure 2.10

Figure 2.10 – Weighted roulette wheel

The selection process for the next generation can be seen as spinning this wheel and picking the string on which the wheel lands.  Strings which hold a larger area on the wheel, due to their fitness being higher, will obviously have a greater probability of surviving to following generations.  Therefore, the next generation, which would still have six members, will be made up from the strongest members of the last generation.  As the process repeats each generation should on average be fitter, and ultimately, the majority of strings will represent the optimal values.  In our case, a string which when decoded gives x to equal 31.

However, the selection process for the next generation is not as simple as this, and the next stage is based even further on the process of evolution.  When selecting new members for the next generation, the algorithm picks them in pairs.  By selecting a pair at a time it can perform the next action known as crossover.  Crossing two strings can be seen as mating, or breeding the strings together.  The algorithm takes two strings and picks a point along the string to perform a crossover.  When the point has been picked, it swaps the values in the two strings with each other as illustrated in figure 2.11

[image: image86.png]Figure 2.11 - A crossover performed on two strings at point 3

This procedure obviously doesn’t always provide the result of increasing fitness in both strings but the theory is to take the best parts of strings and in crossing the two together, get higher fitness values.  When successful it means that a fitter string then has a better chance of being copied to the next generation.  Crossovers do not take place on every pair of strings but with a set probability from the algorithm designer.  Such probabilities are generally in the region of 0.7.

The final process undertaken by the algorithm is mutation.  Again in accordance with evolutionary theories, occasional mutations happen.  This takes place when the string is being copied into the new generation, and in the case of a binary string, would just be inverting the bit.  Mutations should take place much less frequently than crossovers and generally have probabilities in the region of 0.001

Once the above processes have taken place a new generation will have been produced which would be made up from fitter individuals.  Performing these processes on table 2.1 should give a second generation which could look like that in table 2.2.  The dramatic increase in the average fitness shows how the algorithm rapidly focuses on fitter strings in each generation.  The table also includes information about which two parents were used in crossovers and where the crossover site was.  

      Generation 1



     Generation 2

No. String
 x  Fitness
    No.  Parents Cross  String    x   Fitness
  
    f(x)=x2
                 site                         _____________________________________________________________________

1)  00101
 5    25
    1)   (4,4)     4      11100    28    784

2)  10010
 18 
324
    2)   (4,4)     4      11100    28    784

3)  00111
 7
49
    3)   (2,4)     2      10100    20    400

4)  11100
 28
784
    4)   (4,2)     2      11100    26    676

5)  00010
 2
4
    5)   (4,6)     n/a    11100    28    784

6)  00110
 36
36
    6)   (6,4)     n/a    00110    6     36      _________________________________________________________________________________

Total:

1222
 



                3464

average fitness:  203.66                                      577.33

____________________________________________________________________

Table 2.2 – The second generation immediately has a higher average fitness after only one generation

After multiple generations the fitness values of all the individuals should converge to the optimal fitness..  This might not always happen so you may need to run the algorithm several times in order to produce multiple sets of results, which can be quickly interpreted by hand to find the solution.

A great advantage of genetic algorithms is the speed with which they can search large areas.  As soon as one member of the population is found to be much fitter than its counterparts,  the algorithm will focus its attention on it and soon discard the weaker members of a population.  When dealing with populations of millions this proves both effective and efficient.  Comparing this to Holland’s criteria proves genetic algorithms to be highly robust.

3. Background

Much research has been done into genetic algorithms and also cellular automata. Cellular Automata was initially just created as a mathematical process and later applied to help model behaviours and environments.  Genetic Algorithms however are primarily search algorithms, therefore not producing any real graphical output. This does not mean that they cannot be used to do so and have been by a handful of people. Genetic algorithms have been used to create a whole art movement known as genetic art or evolutionary art where the images are directly created by the use of genetic algorithms. 

Karl Sims

Karl Sims was a student at MIT Media Lab studying computer graphics when he became interested in using genetic programming to make imagery. Sims has published many papers on the subject where he discusses the various methods in which he has used genetic programming to evolve imagery (Sims, 1991, p319-328).

The genetic theory discussed earlier used binary strings as the individuals (chromosomes) to make up the population, but Sims extended this to use, procedural parameters and symbolic expressions as his individuals. To decode his individuals, Sims uses sets of procedural rules to create a simulated structure..

[image: image87.jpg]Sims’ first example used genetic parameters to simulate plant growth in a three-dimensional environment.  Using parameters that described branching behaviours, scaling as well as random contributions, trees could be evolved using the selection, crossover and mutation methods described earlier.  Once a tree has been grown, its phenotype could be stored for further alteration.    The actual build of the plants was done using simple cones, spheres and cylinders as well as colours and textures that could all also be evolved using combinations of genetic algorithms.  Figure 3.1 is an image of a forest created using these methods

Figure 3.1 Forest of Evolved Plants built by Karl Sims

Sims moves on to describe how once plant structures have been evolved, both containing their uniquely successful features, he could use using various methods of crossover and mutation to simulate breeding the plants together to produce a variety of offspring.  Figure 3.2 shows the two selected plant shapes in the top left corner with a selection of offspring produced. 

[image: image88.jpg]
Figure 3.2 Mating plant structures by Karl Sims.

The limitations with using this method is that there are fixed number of parameters rules for the development of the phenotypes.  Therefore there is no possibility of evolving new parameters and rules.  Sims overcame this by replacing parameter data as the chromosomes with procedural information, and stating that the elements would not be restricted to a structure or size.  

The expressions could be mutated in a multitude of ways from changing scalar values by random amounts or changing functions. For example changing the trigonometric function (tan X) to (sin X). The products of this was a variety of immensely complex and unexpected imagery as displayed in figure 3.3

[image: image89.jpg]
Figure 3.3 - Imagery produced by Karl Sims using mutation and mating of symbolic expressions

Also working in this area is William Latham.  Latham created a computer program called MUTATOR, which he uses to design very organic forms.  The system works with natural geometry and uses selective mutation and mating processes to breed aesthetically interesting models (Figure 3.4)

[image: image90.jpg]
Figure 3.4 Model produced by William Latham on his genetic modelling program MUTATOR

The concept of cellular automata to draw imagery appears quite obvious as all cellular automata work using a grid of cells, similar to a grid of pixels on a screen. The output from cellular automata, as shown earlier, easily draws patterns and many of these patterns appear similar to fractal imagery.  The patterns themselves can be very interesting and considered aesthetically beautiful, especially when the number of states and colours are increased. Figure 3.5 (Maydwell, No Date) is an example taken from a web site on cellular automata and shows some interesting patterns, similar to the sort of imagery seen using kaleidoscopes.

[image: image91.jpg]Figure 3.5 - Multi-coloured cellular automata have many interesting and aesthetic qualities. Website by 

Not much research has been done into the production of cellular automata that would be able to aesthetically challenge the richness of imagery made using genetic algorithms.  Nevertheless, the imagery, simple as it is, is still aesthetically pleasing even if only a basic level.

The combination of cellular automata with genetic algorithms has been investigated.  However, the use of it has mainly resided in using cellular automata to model behaviours of insect colonies, economic systems or other events that could benefit from this process.  In these cases the graphical output of the cellular automata in aesthetic terms is of not much relevance. 

The EvCA group (Evolving Cellular Automata) main area of research is the use of genetic algorithms to evolve cellular automata.  However, the focus of this particular group, and others who combine the two mathematical techniques, is the use of cellular automata to perform computational tasks. Their work focuses on producing cellular automata that can perform computations requiring global co-ordination, (Mitchell M., Crutchfield J. P. and Das R., 1996). In particular the topics of density classification and synchronisation.  Unfortunately, the results of which are of no real relevance to this project.

However, the lack of published material showing the use of genetic algorithms to help draw aesthetically interesting cellular automata should provide this research with interesting and unexpected results.

4. Method 

The implementation of the project had to come in several stages.  Firstly it was necessary to implement a genetic algorithm, followed by a simple cellular automata.  Once these had been achieved the two needed to be combined and developed further.  

A good example of a genetic algorithm is given by David E Goldberg (Goldberg, 1989, p 59-79). This was used as the basis of the genetic algorithm used throughout the project.  As in section 2.2 the fitness function used is f(x) = x2.  Goldberg’s code is written in Pascal so to later combine this programme with OpenGL functions it was required to convert this code into C++.  

All the programmes written for the project have been coded mainly in C programming language but also use some C++ commands.  For visual display OpenGL was used.  The full code for all programmes can be found in the appendices 1, 2 & 3, and are fully commented.  This should allow anyone with a reasonable knowledge of the C programming language to understand them.

The genetic algorithm has no graphical display to it other than printing the reports.  The structure behind it is based on the theory discussed in section 2.2.  The following should provide an overview of the algorithm but for a strong understanding of the code it should be read with the comments in Appendix 1.  The program prompts the user for a population size, the chromosome/ string length, and number of generations for the algorithm to work with.  In the following examples the population was 25 and chromosome length 8. The programme then moves on to create an initial population of individuals from this information. The strings are initially randomly assigned to strings of 0’s and 1’s to represent the number in a binary number system (the search space can therefore be defined as 0 to 255.  The information for each population is displayed to the console in a similar format to table 2.2 (Section2.2).  As each new generation is produced using the methods of selection crossover and mutation the table is continually updated and re-displayed to the user.  This obviously takes place very rapidly but can be read through and analysed if desired.

A large majority of the code is only really concerned with the printing of report data or initialising variables.  The main actions (selection, crossover, and mutation) can be found in actions.cpp (inside Appendix 1) where the theory described in section 2.2 has been implemented.

Figure 4.1 is an example of the first two generations being displayed to the console and shows how the algorithm has already identified fitter members and copied them to the second generation.  Figure 4.2 shows the 15th & 16th generations,, illustrating how in a few generations, strings which represent the optimal value have already been found in the population. The executable file can be found in Appendix 1 with the source code..

The next step was to create a simple cellular automata programme.  To start with, the one-dimensional rules shown in figure 2.2 were used.  To implement these rules using the C programming language was relatively simple.  By creating the cellular automata space as a two dimensional array, this space could be traversed linearly and each element of the array can be subjected to one of the eight rules in figure 2.2.  Example 4.1 shows code that would work with rule 4.

if (cell[i][j+1] == 0 && cell[i][j] == 1 && cell[i][j-1] == 1)

new_cell[i][j] = 1;

Example 4.1 By checking the state of the element to the left, current element and element to the right, the new state of the current element can be reassigned
[image: image92.jpg]
Figure 4.1 –  First two generations of the genetic algorithm searching for optimal values in 8 bit strings

[image: image93.jpg]
Figure 4.2 –  In only 16 generations, many of the strings are already at the optimal value

As discussed in section 2.1, there are eight possible combinations of the current cell and its two neighbours.  Therefore only eight statements similar to example 4.1 are required to implement all the rules of a one-dimensional cellular automata with two states and three neighbours.  Using the rules determined for the cellular automata in section 2.1 this programme gave the output shown in figure 4.3. The source code and executable file for this programme can be found in Appendix 2.

[image: image94.jpg]Figure 4.3 – Output from first cellular automata programme using rules determined in figure 2.2

In this case we were using the eight rules determined in Figure 2.2.  However, every time we needed to change these rules it required going back to the source code and changing them manually. This is both slow and unpredictable as changing them in the source code gives no indication of what the output would be.  Secondly the display of the automata is very limiting using either spaces or asterisk’s to represent the state of the cell.

The first problem can be overcome using the genetic algorithms. To do this it was required to combine the two programmes into one and also a method for generating rules was required.  To keep things simple it was decided to keep using one-dimensional cellular automata in order to keep the number of rules to a minimum. However, for selection and crossover to take place it would be necessary to display several cellular automata’s at once. Also the rules would have to be randomly generated at first and then these rules evolved together using an interactive fitness function.

[image: image95.jpg]The first step was to display multiple automata’s at once using openGL.  It was decided to use 9 cellular automata as a population size, and these to be displayed in a three by three square.  Using only two states each automaton’s space could still be stored as a two-dimensional array and then displayed with a white pixel representing OFF and black to represent ON.  Using openGL to do this gave the output shown in figure 4.4.  

Figure 4.4 – New method of displaying the multiple cellular automata

However, this is just a new form of presentation and of more importance is the method of rule generation.  Using the one-dimensional automata (3 neighbour, 2 state) we have eight rules to work with.  Coding these is not difficult and can be done with eight forms of the conditional statement in example 4.1. However, the output for these eight rules has been previously determined in the source code where we require both a interactive and random generation method.

To do this we need to look at the rules from a different perspective.  There are eight rules, each of which give an output of zero or one.  This means we can think of the output of all eight rules together as a string of ones and zero’s with length 8. Providing we always test these states in the same order we can use an array of eight integers (either zero or one) and assign each rule to an element of an array.  This is illustrated in figure 4.5

[image: image96.jpg]Figure 4.5. - The eight elements of the array can be used as the outputs for the eight rules

From this the code in example 4.1 can be easily converted to example 4.2

if (cell[i][j-1] == '0' && cell[i][j] == '1' && cell[i][j+1] == '1')

new_cell[i][j] = array[3];

example 4.2 – instead of referencing to predetermined values, the rules output the contents of the array

This example is again for rule 4, and the conditional statement need only be copied for the other seven rules and changed slightly with respect to the member of the array providing the output. 

Using this theory an obviously link comes up with the genetic algorithm.  In our genetic algorithm we were trying to optimise the function f(x) = x2  in the range 0 to 255.  The coding method for our values was the binary number system, and to represent the numbers 0 to 255 we required a string of eight zeros and ones.  As we also need a string of eight for the output of the rules, we could use the chromosome in the genetic algorithm to provide the rules for the cellular automata.  This would mean that if we set our population size to 9 in the genetic algorithm, then the chromosome string for each individual in the population could be used as the output for the eight rules. Example 4.3 shows how again this code can be easily adapted to suit this.

if (cell[i][m] == '0' && cell[i][j] == '1' && cell[i][n] == '1')

new_cell[i][j] = old_pop[i].chromosome[3];

example 4.2 – chromosome string can now be used for the rule output.

However, we are no longer searching for the optimal value of f(x) = x2.  Instead a new interactive fitness function needs to be developed.  The aim of this project is to try and evolve interesting cellular automata using the genetic algorithms so the aesthetic nature of the automata needs to provide the fitness.  As a computer cannot see the aesthetic beauty of the graphic, it needs a user interactive fitness function.  To do this it was decided that the user could use the mouse to select which automata they found most interesting.  On every mouse click, the fitness of the automata would be incremented by 10.  All the finesses of each automaton were set original to two, thus ensuring that they did have some chance of being selected for the next generation even if they were not clicked on at all.

So the user of the programme could select a single automaton, or several automata as many times as they felt appropriate to their aesthetic merits. Then using a menu (activated by the right mouse button), request that a new generation be produced.  When the new generation is produced, the genetic algorithm performs it’s selection on the automata’s fitness and also perform crossovers and mutations on the rule outputs (chromosomes) in order to try and produce new and interesting rules from those found most beautiful in the last generation.  At the same time, all the finesses are reset to 2 and the process can be repeated. 

At this point a programme has been produced to evolve rules for cellular automata.  However, there are only 256 possible sets of rules.  Although at first this may sound like a lot, many of these rules give poor or too similar results.  To try and overcome this it was decided to expand the work by using two-dimensional cellular automata.  This would mean that we still only had two states, but now there were 9 neighbours. As determined earlier in section 2.1, a nine neighbour square give a number of possible sets of rules in the region of  R ≈ 10154. This enormous number in theory would give a wide variety of results. 

Obviously it would be too time consuming, inefficient and also poor practice to write a conditional statement like those in example 2.1 and 2.2, for all 512 combinations of the neighbours.  So a new method for the rule development was created. If the nine neighbour square was traversed in the same direction every time, and each cell still only contains either a zero or one, the output would be a 9 bit string of zeros or ones.  This string can then be converted into an integer number using the binary number system and used as the index of an array to provide the output for each rule. This time the array would be of size 512.  This is illustrated in figure 4.6

[image: image97.jpg]Figure 4.6 – The nine neighbour squares can be converted into an integer value that can be used to access an element of an array for the output of the rule

Using this relatively simple theory, the number of possible automata that could be drawn expanded rapidly from 256 to billions. 

At first this was tested with starting points similar to those used in Conway’s game of life. However this proved immensely problematic. On every run of the programme, the initial population turned into just a of pixels which rapidly expanded until the entire automaton space was covered in an unordered and chaotic pattern. Figure 4.7 shows these chaotic results.

[image: image2.jpg]
Figure 4.7. – The patterns produced using the two dimensional automata rapidly grew into an chaotic and uninteresting patterns

Despite exhaustive attempts with different starting configurations it was decided that the rules which would give good results were too rare (No rules were ever found to give good results). So it was decided that the process must be changed. Instead of the whole grid being updated continuously there would be only one pass over the automata space.  Also, instead of the initial population starting in the middle, it would be placed on the top row and the grid traversed from top to bottom and on each row from left to right. This immediately proved very effective and gave strong results, but only much later was it realised at what cost.  

Unfortunately, this method meant that rather than using a nine neighbour square, the neighbourhood was actually only of 4.  This is best explained throughout the diagram in figure 4.8

[image: image98.jpg]Figure 4.8 – Only four of the nine neighbours can ever have an effect of the cell being inspected

Even though the code is still working on a nine neighbour square, there are only really four squares that can have an effect.  This is only one more neighbour than in the one-dimensional automata.  However, using earlier formulae we can still see that there are         216 = 65536 sets of rules which is still a considerable increase to before. It is also thought that the inclusion of the new neighbour being on the same line contributed enormously to the variety.  Having a neighbour on the same line as the current cell causes horizontal drawing as well as vertical.

To try and increase variation it was also decided that the top row/ initial state of the automata could either contain a single active cell somewhere along the row or could be randomly assigned zeros and ones across the whole row.  These combinations of starting points further produced a wider variety of results.  Although the rules might still be the same, a variety of starting points produced multiple patterns with very slight differences.  To enhance the role of the genetic algorithm further, each individual/ automata could store its initial state and then when a new generation was produced the initial row states are also subject to crossovers and mutations. To further help with improving the appearance, the colours of live cells could be changed using the menu to either  red, green, blue or white.

The full commented source code for this programme along with the executable program itself is available in Appendix 3, and is far as the implementation progressed.  Although, the two dimensional 9 neighbour automata were not achieved fully, the results from these simpler rules does provide a rich variety of interesting patterns.

5. Results

Looking back at the aim of the project being ‘how rules for aesthetically interesting cellular automata can be evolved using genetic algorithms’, analysis of the results is somewhat difficult, as the aesthetics qualities of an image are personal to every user.   Hopefully interesting patterns have been identified and this section works as an impartial analysis.  

The program itself functions correctly with respect to its aims.  It initially produces a random generation of cellular automata and then a user can select the automata they prefer and ask for a new generation to be produced.  The program then correctly produces a new generation based upon the fittest members of the first generation.  To ensure that development and progress is made the members of new generations were subjected to occasional mutations and crossovers of both rule sets and initial states.  The aim of this being that throughout the user interaction and selection procedure, the program creates more of the cellular automata that the user likes but some with slight variations. Therefore, creating a multitude of interesting and visually appealing patterns.

However, there are several small problems with this process.  We have seen the problems with the nine neighbour square producing chaotic results, and even using the neighbourhood of four with only 2 states there are still tens of thousands of rules.  This leads to an unfortunate, but unavoidable, problem that with certain rule sets, the entire automata dies, leaving just a blank space instead of a pattern for the automata.  This appears to happen fairly regularly, giving the impression there are a multitude of rules, which cause this affect.  However, this is somewhat unavoidable at this stage but additional code could probably identify and overcome this problem.

Another problem caused was due to crossovers.  Whereas mutations of the rules would only affect a single rule of the set at a time, a crossover could enforce massive changes.  If the crossover site was close to the beginning of the string, then all the rules following could be subject to change, this would effect the overall look of the automaton dramatically and not produce variations of the fittest, but instead an altogether new automaton. This is not really the aim of the project but on the other side can be seen as large scale mutations, which avoids a convergence of the nine rules all becoming to similar.
Nevertheless, these problems did not seem to affect the programme too dramatically and despite the occasional anomaly or blank automaton space, the programme did work. Examples of multiple generations are shown in Appendix 4 and the fitness of the automata before the new generation has been added in the bottom right hand corner for each automaton.  Some of these examples show how uninteresting automata were produced, or the programme converged on one particular pattern too quickly but this is only to be expected.  However, the question still remains, was the process achieving aesthetically interesting results?


All the cellular automata produced very geometric patterns.  Most commonly involving triangular structures and diagonal lines. Also working on quite a small scale the images appear quite pixelated with jagged edges, rather than the usual smooth anti-aliased lines one is exposed to regularly with computer graphics.  To asses the qualities of the graphics one must look past trivial problems like jagged edges and also accept that all the images produced will be graphical patterns and shapes. 

It can be seen in the appendices that there is a large variety of imagery produced.  They do all have many similar features, triangular structures and diagonal lines, but there is still a wide range of patterns. The images cannot be compared to those produced by the likes of Karl Sims and William Latham but as simple pattern making they are very effective. 

[image: image99.jpg]Users tended to say that they liked a group of automata with similar properties and this is illustrated in the following examples where multiple automata of similar structure are shown together. It is also worth noting that colour was not considered a factor and decisions were made solely upon the patterns.

Figure 5.1 –Type 1 Automata

Type 1 (figure 5.1) automata were liked quite universally by users.  Most people were drawn to them in some way or another and it is easy to see why.  The patterns in the two leftmost automata are good examples of slightly different rules that give very similar results.  They are very aesthetically pleasing and you might expect to find patterns like these as decoration on pottery.  They have a kind of Aztec feel to them in the layers of repeated patterns that move diagonally over the sample.  The automaton on the right is admittedly different, but still has a similar structure with respect to the multiple columns of variable width and pattern shapes. 

[image: image100.jpg]Figure 5.2 – Type 2 Automata

[image: image101.jpg]The second style that was well received were automata with bold patterns such as those in figure 5.2. These automata are very striking in comparison to many of the others and lack the finer detail.  Being composed of large, solid triangles give these automata a very solid and strong feel.

Figure 5.3 – Type 3 Automata

Type 3 automata following the style of those in figure 5.3 were very common despite fewer users liking them.  These types of automata are built up very geometrically from long lines with sudden changes in direction.  The interesting factor of this style is that when the lines change direction, the solidity of the colour varies.  This almost give and illusion that there is three dimensional depth to the automaton with different sides of the object receiving less light and therefore all being shaded differently.  Abstract and difficult as this might be to see for some users, others found it quite apparent.

Another very common type of automata are those that are dominated by large amounts of smaller triangles.  Using one-dimensional cellular automata we achieved the patterns of Pascal’s triangle and the top three examples in figure 5.4 show strong characteristics of this pattern.  Large sections of these top three are covered in the Pascal’s triangle structure but other parts vary from, either with thicker lines or slightly more chaotic and less structured.  The lower two examples in figure 5.4 are similar to those above as they are also dominated by smaller triangles.  The difference with these is that the triangles are positioned at an angle compared to those above.  Also, the patterns are somewhat more chaotic, rapidly changing across the whole area.  Just as sections look to have become stable, a new pattern emerges. Unstructured as this might appear it gives a very intricate and complex pattern.

[image: image102.jpg]
Figure 5.4 – Type 4 Automata

The final pattern style was perhaps the most liked of the general patterns. Examples are shown in figure 5.5.  These patterns are built up from a mass of varying sized triangles to fill a space.  Whether this be the entire automaton space or a triangular shape like the middle of the three examples in figure 5.5.  These patterns are perhaps the most intricate of the lot with a seemingly chaotic structure which upon closer inspection appears very ordered.  The mass of triangles looks like what you might expect to see under a microscope magnifying a crystal with its dense structure.  Many also compared them to champagne and cocktail glasses stacked up.  These styles of patterns were popular with nearly all users.

[image: image103.jpg].

Figure 5.5 – Smaller triangles building up very dense and intricate patterns

The examples given previously are generalised patterns that seem to reappear regularly when the program was executed.  However, certain rarer patters were the ones which users identified as a favourites.  This choice was generally quite random and therefore can probably be determined as a matter personal opinion of the user but it was certainly the less frequent patterns, which caught the user’s eye.  From a sample of automata, shown in Appendix 5 many people identified the automaton shown in figure 5.6 to be their strong favourite.  Reasons given were that it had a stronger organic sense about it.  This is not surprising that it was identified for this reason as almost all the patterns produced give very geometric and structured results so when a pattern emerged that is slightly different from this users are bound to identify with it.  However, it is promising to see that patterns like in figure 5.6 could be produced which differ, even if only slightly, from the general geometric style.

[image: image104.jpg]
Figure 5.6 – More organic structures can be produced but this proved to be less frequent

Overall, a large variety of patterns were achieved and almost all users found patterns that appealed to them.  The use of the genetic algorithm to evolve the patterns proved useful as it gave many new variations of the users favourite patterns to choose from in the next generation.  This meant that all users found satisfying results even if this is dependent on the each person’s opinion.  It was also good to see that imagery which a multitude of people found very interesting, like that in figure 5.6, could be produced, even it was a rare event.

6. Conclusions

The results obtained throughout this project have shown that very interesting patterns can be produced using cellular automata.  Even though there are only two colours in each image, complex pictures have been created.  Almost every person exposed to the results identified certain imagery that they consider being aesthetically pleasing. 

The use of genetic algorithms to produce the rules for the cellular automata has aided this process in many ways. Using the evolutionary processes enables a user to create imagery with very little knowledge of the workings behind them.  The ability of the genetic algorithm to take the most interesting of the automata and develop them through the actions of crossover and mutation leads users to create very detailed patterns, but also caused the occasional new drawing to be introduced.  The random intervention of the genetic algorithms helped make the imagery more interesting without the user knowing how. It also gives the user new imagery to assess and interpret from one generation to the next.  Although, the user does not have complete control over the processes, they can still manage to evolve and create the pictures successfully.

However, their aesthetic merits on a wider scale are questionable. They are still very simple two coloured patterns, and the imagery produced is not likely to make it’s way into any art galleries.  Nevertheless, even though these are not as complex as many of the photographs, paintings or other computer generated imagery we are exposed to, they do have within themselves strong patterns of visual interest, even if only on a primitive level. Also, further development of the processes would certainly lead to much richer and complex imagery.

6.1 Future Work
This project has only touched on the outskirts of an enormous subject that could be developed in many ways to produce far more sophisticated imagery.  Further investigation into how the genetic algorithms could generate rules, as well as aiding the process of drawing, could lead to an enormous variety of results.  The most obvious way in which to expand the project would be to add more states to each cell.  Eventually, this could move on from just producing dual coloured imagery, to a range of one colour (grayscale) and eventually full colour automata’s using RGB values for each pixel, therefore creating far more vivid imagery.

Another attractive way in which to develop the work might be to add a third dimension.  At the moment we have only got as far to be concerned with drawing on two-dimensional grids of pixels.  However, adding a third dimension using would be quite simple in theory. Using a three dimensional lattice of points for the automata’s space with primitive objects, such as spheres or cubes, to represent points in the space which were alive (ON).  Combining this with multiple colours would surely provide many interesting results.

Perhaps a more complex method of developing the work would be that once two interesting automata has been found, a genetic algorithm could interpolate between the images.  This would give an animation of the transition of one image into another.    This could be done using the cell states of one automaton as the optimal fitness.  The other automata would then change cell states every generation with the aim of finding the optimal fitness state of the chosen automaton.  This would most probably lead to chaotic results at first when the automata being converted is testing many different options, but over time should cause a transition between the two images.  With thorough investigation this process could lead to abstract animations of the automata.

The possibilities are endless with the different ways in which genetic algorithms could be used to determine rules and manipulate the imagery. It can be said with confidence that using evolutionary processes to derive imagery is a powerful method that has many avenues worth investigating.
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Appendix 1:

Genetic Algorithm Source code:

All source code files are available in a directory on CD at the following path.


\Appendices\Appendix 1\

This folder will contain the following source code files for the genetic algorithm program. 

actions.h
Function prototypes for major actions (selection, crossover, mutation etc).

actions.cpp
Function declarations for major actions (selection, crossover, mutation etc).

all_classes.h

Data type definitions

all_classes.cpp

Random number generator functions

global_variables.h
Global variable declaration

init.h
Function prototypes for initialisation functions and report printing functions

init.cpp
Function declarations for initialisation functions and report printing functions

main.cpp

Main function controlling program execution

The folder also contains object (.o) files, a makefile and the executable program. These do not need to be read and are only concerned with executing the program.

To run the program

Type:


./program
If this is unsuccessful the program may need compilation. If this is the case type:



make

followed by

./program

Appendix 2: 

Simple cellular automata source code:

All source code files are available in a directory on CD at the following path.


\Appendices\Appendix 2\

This folder contains the one source code file for the simple cellular automata program: 

automata.cpp
In this case all code is embedded in the one file. This includes the rule generation and drawing to the console as well as the main function

The folder also contains automata.o, a makefile and the executable program. These do not need to be read and are only concerned with executing the program.

To run the program

Type:


./program
If this is unsuccessful, the program may need compilation. If this is the case type:



make

followed by

./program

Appendix 3:

Final Program Source Code:

All source code files are available in a directory on CD at the following path.


\Appendices\Appendix 3\

This folder will contain the following source code files for the evolving cellular automata using genetic algorithms program. 

automata_program.cpp
This is the main function file.  Therefore it contains the majority of the openGL functions concerned with the initialisation of the openGL windows and actual drawing of automata into the sub-windows

actions.h
Function prototypes for major genetic algorithm actions (selection, crossover, mutation etc). Also swapping generations and other actions

actions.cpp
Function declarations for major genetic algorithm actions (selection, crossover, mutation etc). Also swapping generations and other actions

all_classes.h

Data type definitions

all_classes.cpp

Random number generator functions

draw.h


Function prototypes for drawing procedures.

draw.cpp
Function delcaration for drawing procedures.  These don’t actually draw out to screen, they just organise the array ready to be drawn out to screen

global_variables.h
Global variable declaration

init.h
Function prototypes for initialisation functions and report printing functions

init.cpp
Function declarations for initialisation functions and report printing functions

input.h


Function prototypes for controlling user input via mouse.

input.cpp
Function declarations for controlling mouse input and acting appropriately upon those actions

The folder also contains object (.o) files, a makefile and the executable program. These do not need to be read and are only concerned with executing the program.

To run the program

Type:


./automata
If this is unsuccessful the program may need compilation. If this is the case type:



make

followed by

./automata

Brief User Guide:

Whilst running, every time you click on an automaton, it’s fitness is increased by 10.  The more you click on an automaton the better its chances are of surviving to the next generation.  Multiple automata can be selected as many times as the user wishes. 

To move on to the next generation

· Click and hold down the right mouse button

· Select ‘new generation’

To change colours

· Click and hold down the right mouse button

· Highlight change colours option

· Select a colour from the submenu. (Options, black, red, green, blue, and yellow).

To reset the program and obtain a fresh new population of randomly selected automata

· Click and hold down the right mouse button 

· Select ‘reset’

Appendix 4:
The following are 7 examples of the automata program running through generations.  The fitness had been added to each automaton to help shown the process more clearly. Full colour versions available on CD at: \Appendicies\Appendix 4\

Example of program running 1:

[image: image3.jpg]
[image: image4.jpg]

1st Generation
2nd Generation

[image: image5.jpg]
[image: image6.jpg]

3rd Generation
4th  Generation

[image: image7.jpg]
[image: image8.jpg]

5th Generation
6th Generation

[image: image9.jpg]

7th Generation

Example of program running 2:

Unfortunately in this case the rules converged on an uninteresting automaton in only the second generation.
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Example of program running 3:
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Example of program running 4:
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Example of program running 5:
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Example of program running 6:

Unfortunately in this case the automata produced were not of high interest and this caused the program to converge on a less interesting pattern
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Example of program running 7:
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Appendix 5:
Examples of some of the more interesting automata produced using the program. (Full colour versions available on CD at \Appendicies\Appendix 5\)
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