Contents

1.0
Introduction

1

2.0
Research

3

2.1
What makes a good file format?

4

2.2
Other file format converters

9

2.3
Other ASCII file formats between Max and Maya

9

3.0
Comparison of .MA and .ASE

11

3.1
 Data representation and object creation

12

4.0
The Program

19

5.0
Summary of Development

22
6.0
Conclusion

25

7.0 Appendix A

7.1 General File Information

27

7.2
Detailed File Information

7.2.1
The .ASE file format

28

7.2.3
The .MA file format

30

8.0 Appendix B

8.1
Converting quaternions to a rotation matrix

33

9.0
Bibliography

35
Introduction

The increasing interest in 3D products has gone hand in hand with the development of a new generation of 3D graphics file formats. Each platform and program has a unique set of features and capabilities related to a particular audience, for example, 3D animators, shader writers or engineers all require different things from a 3D graphics package. As a result, a 3D package could be expected to support tens, if not hundreds of file formats. Supporting every format is impossible, and exchanging data between software packages is difficult, often impossible. The best format to use for interchanging data often depends on the type of 3D application being used, for example, in order to move data between 3D CAD programs such as AutoCad, ProE or I-DEAS there are several graphics file formats available, for example, the AutoDesk DXF file format, the IGES file format or the ACIS SAT file format. 3D Modellers and animators must also consider file formats, for example, a common ‘inbetween’ file format from 3D Studio Max to Maya is the DXF for moving geometry between the two packages, however, it handles normal information very badly and takes no UV co-ordinates between the packages. There are very few, if any, file formats that can be read by both packages that can take across animation.

For my innovations project I propose the following idea. I would like to produce an inbetween program that enables animation to be produced in one package, in this case, 3D Studio Max, and allows that animation and other information to be imported into Maya, on the Windows NT and SGI platforms.

I will be exporting from 3D Studio Max using the .ASE or ASCII Export file type. I then hope to be able to extract the relevant information out of the ASCII file and place it in a .MA or Maya ASCII file type.

By the end of the project I hope to be able to move polygon objects, various scene information, animation curves, possibly skeletons and IK and any animation key frames.

Research

There are literally hundreds of different kinds of 3D Graphic file formats ranging from those that can handle simple geometry to those that may contain full scene information relative to a specific package. They can generally be, however, split up into 2 main sections.

The initial building block for a standard 3D graphic file format comes from VRML. It differs from programming languages like C++ in that, instead of describing how the computer should act through a series of language specific commands, it describes how a 3D scene should look.
 The development of VRML has been an attempt to define a general 3D file format. It was a conscious attempt to develop a semi universal language or syntax that could be used by most 3D packages.

Languages like C++ describe in extreme detail the explicit operations that the computer must perform to complete a task. Languages like VRML do not describe how something is done, instead, they describe what something is. For example, to draw a 3D sphere on the screen in C++ would take many lines, even pages of code, depending on the graphics capability of your computer and the development software available. In VRML, a 3D sphere is drawn simply by

Sphere {

 Radius 5

}

VRML is a very recent attempt to define an open, multi-platform, virtual reality language for the web. It has recently, however, become supported in various 3D packages as a recognized export file format. The concept was designed by a team, and was made to be extensible and expressive, but may be continually added to and advanced.

From this standpoint it becomes clear what professional programmers or users require from a more general 3D file format. VRML is a useful example, as it demonstrates that the file describes what a scene looks like, rather than how it was created. It is also open ended and may be easily expanded upon.

There are several other graphics file formats that are widely supported that typically may contain geometric data of an object, for example, the AutoDesk DXF file format. Reading the file in a text editor, it is doubtful that AutoDesk ever really intended the DXF file to read be human eyes. It does, however, have a very regular organization, using numbers to signify what kind of data will follow, for example,

999

This is a comment

This regular pattern allows users, while not necessarily being able to read what is going on in the file, to implement a simple parsing algorithm to recognize certain groups of numbers and store the data following it correctly and use it for another purpose.

The ASE file format, or the 3D Studio Max ASCII file format takes this standard one step further and simply records and stores all scene, geometry and animation information in the file. They have taken the step, however, of replacing the numbers with words that mean the file can be read and understood by users. Again, similarly to VRML, it contains a description of how the scene looks and does not contain information on how it was created. It is still written in a very regimented way, although, obviously, as more information is stored inside the file he more complex the file becomes. This can be used to an advantage however, as the inclusion of characters such as { and } define where a block of information exists and allows it to be simply parsed through and the information stored.

The authors of Maya and the .MA file format were unlikely ever to intend these files for general use outside of the program. File formats such as these, use the program language contained within the package they are designed for and contain a list of instructions to be carried out by the computer when loading up the package, that executed in the specific order will give what the user wants.

Rather than describe what a scene looks like, file types such as these contain program specific commands that demonstrate how the scene was created. In the case of Maya, the .MA file contains a long list of MEL commands. The Maya format differs from VRML and the ASE files in the fact that it was not necessary to make the file type portable.

What makes a good file format?

In general, a meeting will take place to decide on the content, layout and design of graphics file formats. Numerous issues will be considered, for example, the aims of the program, the information to be stored in the file, who it is meant to be read by, is it meant for external use only or should it be ASCII for reference by an outside party, is it to be portable or is it program specific? etc. Rib files, for example, as stated in The RenderMan Interface Specification, must fulfill certain criteria,

· “A photo realistic rendering program must simulate a real camera and its many attributes besides just position and direction of view. This means that a photo realistic rendering program must be capable of:

· hidden surface removal so that only visible objects appear in the computed image,

· spatial filtering so that aliasing artifacts are not present,

· dithering so that quantization artifacts are not noticeable,

· temporal filtering so that the opening and closing of the shutter causes moving objects to be blurred,

· and depth of field so that only objects at the current focal distance are sharply in focus.

The RenderMan Interface is designed so that the information needed to specify a photo realistic image can be passed to different rendering programs compactly and efficiently. The interface itself is designed to drive different hardware devices, software implementations and rendering algorithms. Many types of rendering systems are accommodated by this interface

The RISpec states clearly what the RIB file format is designed for and how it is used and illustrate well the workings behind a well thought out file format. Both binary and ASCII Rib files can be generated and, whilst still being complex for a large scene containing animation or large models, etc. the file format layout follows a fairly simple layout. It is written in some form of English, or at the very least, it is labeled in English, enabling the user to understand what is being represented in the file. For example, the following sample of code describes a spotlight in Maya, in Rib format.

TransformBegin

Attribute "identifier" "name" ["spotLightShape1"]

Transform [-0.728969 -1.25176e-017 0.684547 0 -0.225125 0.944376 -0.239733 0 -0.64647 -0.328867 -0.688421 0 54.2524 12.1781 28.8548 1]

LightSource "mtorSpotLight" 1 "intensity" [1]"lightcolor" [1 1 1]"decayRate" [0]"coneAngle" [0.349066]"penumbraAngle" [0]"dropOff" [0]"useBarnDoors" [0]"barnDoors" [0.349066 0.349066 0.349066 0.349066]

"useDecayRegions" [0]"decayRegions" [1 2 3 6 8 10]

TransformEnd

The light is declared inside a simple syntax, between a TransformBegin and a TransformEnd, and is written, or labeled in English. It is written in such a way that all values or attributes are output in the Rib file, and it is very obvious what each attribute is. It uses few program specific commands and could, therefore, be considered to be very portable. Comparing this to the ASE file format, it is obvious it is fairly similar:

*LIGHTOBJECT {

*NODE_NAME "Fspot01"

*LIGHT_TYPE Target

*NODE_TM {

*NODE_NAME "Fspot01"

*INHERIT_POS 0 0 0

*INHERIT_ROT 0 0 0

*INHERIT_SCL 0 0 0

*TM_ROW0 1.5053
-0.1879
0.3929

*TM_ROW1 -0.7998
2.4959
0.2565

*TM_ROW2 -0.6835
0.3218
1.3712

*TM_ROW3 20.7157
-35.6907
64.5380

*TM_POS 20.7157
-35.6907
64.5380

*TM_ROTAXIS -0.0609
0.9421
-0.3298

*TM_ROTANGLE 0.3693

*TM_SCALE 1.4002
2.8297
1.3689

*TM_SCALEAXIS -0.6105
-0.3887
-0.6900

*TM_SCALEAXISANG 0.4712

}

*LIGHT_SHADOWS Off

*LIGHT_USELIGHT 1

*LIGHT_SPOTSHAPE Circle

*LIGHT_USEGLOBAL 0

*LIGHT_ABSMAPBIAS 0

*LIGHT_OVERSHOOT 0

*LIGHT_SETTINGS {

*TIMEVALUE 0

*LIGHT_COLOR 1.0000
1.0000
1.0000

*LIGHT_INTENS 1.0000

*LIGHT_ASPECT 1.0000

*LIGHT_HOTSPOT 43.0000

*LIGHT_FALLOFF 45.0000

*LIGHT_TDIST 240.0000

*LIGHT_MAPBIAS 1.0000

*LIGHT_MAPRANGE 4.0000

*LIGHT_MAPSIZE 512

*LIGHT_RAYBIAS 0.0000

}

using the same labeling techniques as the Rib file and demonstrating that they are both aimed at the same purpose. The settings for the light are listed in a specific order and the labeled in English. There is also an inherent brace structure, which, as with the Rib file, makes it extremely easy to parse. The Rib file format, for example, declares a new transform or attribute in the scene using

TransformBegin or AttributeBegin

Which will then be applied to any object declared before the

TransformEnd or AttributeEnd

In this way, the Rib file format makes it very easy to apply the same transformations to several objects, for example, the movement of an arm with hierarchical fingers, wrist and elbow, etc. can easily be defined. All transforms or attributes relating to a specific object are assigned between these keywords.

3D Studio Max uses C like syntax, { and }. The values are stored in an obvious order and are even spaced out for legibility. In the same way as C, this helps with definitions and helps to assign the correct attribute to the correct object. For example, in the example above, it is obvious where the light object definition both begins and ends. The initial position, orientation and scale matrices are defined within the default node ‘NODE_TM’, with other, light specific attributes being defined within the main body of the LIGHTOBJECT. Comparing this to the .MA file format :

createNode transform -n "spotLight1";

setAttr ".t" -type "double3" 0.10000000000000002 0.10000000000000002 0.10000000000000002 ;

setAttr ".r" -type "double3" 0.20000000000000001 0.20000000000000001 0.20000000000000001 ;

setAttr ".s" -type "double3" 1.1000000000000001 1.1000000000000001 1.1000000000000001 ;

createNode spotLight -n "spotLightShape1" -p "spotLight1";

setAttr -k off ".v";

setAttr ".cl" -type "float3" 1.1 1.1 1.1 ;

setAttr ".in" 1.2000000476837158;

setAttr ".sc" -type "float3" 0.5 0.5 0.5 ;

setAttr ".ca" 50;

setAttr ".pa" 10;

setAttr ".dro" 20;

connectAttr "lightLinker1.msg" ":lightList1.ln" -na;

connectAttr "spotLightShape1.ltd" ":lightList1.l" -na;

connectAttr "spotLight1.iog" ":defaultLightSet.dsm" -na;

It is clear that the information contained in it is not particularly for human reference. It is written in Mel and takes the user through the exact motions that Maya goes through to produce a light, for example, setting up transform nodes, name nodes, and even attaching it to the default light map. The labeling system differs from that in Max and RenderMan in that it is not immediately recognisable what the initials represent. Looking at the file format alongside Maya, it is obviously easy to understand what they represent, however, on more complex models or IK, for example, this form of labeling can get very confusing and often bears little resemblance to the actual name of the attribute. There is also little inherent brace or keyword structure, and it relies more on continuing a set of definitions until the next createNode is encountered, for example,

createNode camera -s -n "sideShape" -p "side";

setAttr -k off ".v" no;

setAttr ".rnd" no;

setAttr ".coi" 100;

setAttr ".ow" 30;

setAttr ".imn" -type "string" "side";

setAttr ".den" -type "string" "side_depth";

setAttr ".man" -type "string" "side_mask";

setAttr ".hc" -type "string" "viewSet -s %camera";

setAttr ".o" yes;

It is, therefore, slightly more difficult to parse, however, there are still various useful keywords that can be used to detect new relevant information. It should be stated however, that the .MA file format is meant as a list of instructions to Maya itself, and appears to only be in ASCII for basic research purposes. This also, however, makes it extremely difficult to write a program that would convert a .MA file to a .MAX file as the user would have to write a complete MEL interpreter containing several hundred keywords!

Programmers must also consider the information that is to be written into the file. Certain 3D file formats for example are very restrictive in the information they can carry. It may be necessary for the file to contain information on primitives, as does the Maya ASCII and binary files. In the case of most portable graphics file formats it will not be necessary and the absolute position of the vertices and edge and face information will be stored instead, as is the case with DXF and ASE files. The type of geometry to be stored must also be decided, for example, is the file to hold polygonal information only, as is the case with DXF files and some lower level .OBJ files, or is it to contain NURBS or other geometric information such as curves and shapes, as is the case with the .MAX, .MB and IGES file types. Relating to this, is the file type to be used as an object transporter between packages or will it also be used to store or move animation between programs. If the latter is the case, it may also be necessary to build in support for IK and skeletons, or at the very least, build in some key frame support. The shading and texturing information must also be considered. For example, is the file type to support and carry UV and normal information, as well as path names for textures and their associated attributes? If the file is saved from a 3D package, there is also likely to be sections of information on cameras and lighting. The programmers must decide whether all this information should these be stored inside a less portable file type or one that is meant more for moving geometry between packages, for example, the DXF and OBJ file formats.

Of course, there will always be different requirements for 3D Graphics file formats. Some industries, such as the design and mechanical engineering industries may only require that the 3D model be contained inside the file, however, with regard to this geometry, they will want as few restrictions as possible on what information may be taken between packages, the IGES file type, for example, has grown to support both polygonal geometry and NURBS information, whilst supporting little else. The 3D artist and animator, however, may require that more than the object can be taken between packages. Several file types exist to move and store individual parts of the 3D scene, however, I have yet to see a good file format that can store both polygonal and NURBS information, as well as texture information, lights and camera information and animation. It remains the job of the conversion package to convert between one program specific saved file and another.

A good file format must first consider whom it is written for, secondly it’s use and thirdly the information to be contained within it. All these points are separate yet depend heavily on each other. If it is written in binary and for internal program use only, the consideration for legibility is negligible. However, considering a file format that is meant either as an ASCII export or an ASCII representation of the scene, legibility should be paramount. As an export from a 3D package, the file would more than likely be a representation of the scene and might contain camera and light information as well as geometry and even animation information. The file format should be in some understandable order, grouping relevant information together in a readable way. The information should, at the very least, be labeled. There should be a simple, yet understandable structure to the layout, for example, the brace structure used in Max or the TransformBegin/End keywords in the Rib file format. Comments would also be easy to add to the file. Ideally, in the package, there should be some control over what the export file will contain, for example, the choice of animation or simply geometry. Individual program characteristics should, of course, be taken into account, and it is ultimately down to the information that a program uses, or the user requires, to define a file format.

Other File Format Converters

There are few graphics file format converters available on the market at the moment. The most common is PolyTrans from Okino, which, according to the most recent plugins I have seen does not yet translate animation and does not support the .ASE file format. PolyTrans is also very expensive, however, it is widely known and used throughout the industry. There are several websites devoted to plugins for the program and it may be constantly updated for new file types. Another, more recent file format converter, 3D Exploration is available as shareware yet covers numerous file types including .MAX, .ASE and .OBJ files, however, once again, it only supports information on objects, materials, cameras and light sources, all other information is skipped. Similarly, most other file converters support neither the file types I have used, often do not support any Maya format, other than .OBJ, and do not take animation at all.

They do have, however, an interface specifically designed for viewing and often altering 3D Scenes. PolyTrans, for example, contains the NuGraf rendering system and can be used to perform various actions on polygonal objects, etc. and render them entirely within the package. 3D Exploration contains a simple OpenGL interface to view the workspace, however, it contains virtually no tools to modify the scene.

For the purposes of my Innovations project I have decided to opt for a more command line UNIX style interface and concentrate much more on the conversion aspects of the program rather than the file viewer and OpenGL side.

Other ASCII file formats between Max and Maya

Initially, it seemed, there would have been several possible candidates for the ASCII file type used to move information between the two packages.

However, there are, in fact, very few file formats that, firstly can be exported from 3D Studio Max, and secondly contain all the relevant information that I wished to move between the packages. The files must contain camera, light and scene information as well geometric information and animation. Due to these restrictions, the STL and DXF file formats were discarded as they contain only geometry information and nothing else. VRML was a very good candidate for the file and Max supports the export to VRML1 of simple animation, materials object and cameras, however, the lighting model is very simple and generally contains little information. The IK export from Max to VRML1 is also a little buggy and there is much confusion about various aspects relating to inheritance. The ASE format appeared to be another strong candidate and, as it was the official Max ASCII export would store all the information properly and without the confusion of the VRML. It ultimately became the chosen file format because of two main reasons. Firstly, there is a very nice interface for the export of ASE files where it is possible to choose exactly what information the export file is to contain; this would obviously be a big help when trying to understand the internal workings of the file format. Secondly, as the ASE is the officially supported Max ASCII export file type, I assume that the file will be updated alongside future releases of 3D Studio and will, therefore, continue to hold more up to date information.

With regards to Maya, there are very few ASCII file types that can be imported directly, and only the .MA and .MB file types support the key frame animation information I was looking to bring over from 3D Studio.

Comparison of .MA and ASE
I do not intend, here, to write a comparison of the syntax and commands used in both files. Rather, the following is my own views of the file formats, how they are implemented and how user friendly they are.

These file formats differ fundamentally in a few major ways. Firstly, the Maya ASCII file is unlikely ever to be intended for general use outside of the program itself. The ASE file, however, is included under the export menu in 3D Studio and is therefore intended for general use. This inherent difference means that different design considerations were required when designing the file format itself.

The .MA format is only aimed at users who have a broad knowledge of MEL scripting. The file itself, read in a text window reads as a sequence of MEL commands that are to be executed by Maya just as a Mel script is. It is a much more flexible format to use as there is no need for the programmers to write a separate file format to record information from Maya and store it differently, and the information may be stored in the correct language. For example, rather than have to build a data structure to recognize vertex information from a file, it can be simply stored exactly as it is used in the Maya program itself. It also offers several advantages in the way that, rather than store an absolute position for the vertices it can easily store objects with a history, deformers on objects and store Maya’s own primitives. It is simply the data used by Maya to create the scene written down in some vaguely legible format. There are, however, several disadvantages of this approach to file format creation. The use of Mel script makes it extremely difficult to translate from this language into another. For example, there are several hundred, if not thousands of Mel commands and, executed in different orders, they can have different effects. The user would be required to write a Mel parser to correctly understand what was happening in the file. For a user with a good understanding of Mel, however, it provides enormous scope for editing the .MA file, as long as it is going to be used in Maya again, for example, it is extremely easy to write a short shell script that adds a certain Mel command at a certain point in a file.

The .ASE file format is intended for outside use and is therefore written, rather than in MaxScript, in English. The commands are easy to interpret and it is not difficult to reverse engineer the file format. Although it is, to a point, program specific, the data is stored in a logical order and parsing is relatively easy. Read into a text window the file reads in a basic form of English, unlike Maya, each attribute or object is labeled with a word rather than a singe letter. The ASE file format contains information on, for example, how to build a 3D object by listing its vertex co-ordinates in 3D space, and listing how the faces are made up from the edge information. This kind of file format may be easily used to translate this information into other packages, however, using the same co-ordinate system and size as that in the original package. It does, however, illustrate the advantage that Maya has over Max, in the fact that the .ASE file contains no history information and simply stores the absolute co-ordinates of the vertices, and any animation performed on it from the start position. In Maya, for example, the whole life of the object would be recorded beginning with a primitive createNode. The file would then show the objects position using various transform nodes and key frames, that executed in order and using the parameters given, would give the correct result. The Maya file format is capable of growing with the package, however, if any major changes are made in MEL, the same changes must also be made in the .MA file. There are no Max specific commands listed in the file, only general keywords, however, once again, there is scope for extra information to be stored in later versions of the ASE file without completely restructuring it.

There are, however, many disadvantages with this approach. Firstly, the ASE file format itself cannot be loaded or imported back into 3D Studio Max. The file appears to be simply a list of information of what is contained in the scene and it seems very strange that Max cannot read this information back in. Secondly, the file format may not support everything that may be done inside 3D Studio Max, however, it may be easily added to in later versions. The Maya file contains every bit of scene information, as it is basically a copy of the data used by the computer itself written in some human legible manner. The Max file is an export taking certain data, and it is not guaranteed that this will be the exact information required by the user. The format, as it is not made to be loaded back into Max, has no information regarding an objects stack, the equivalent of history in Maya, and contains nothing with regard to object primitives, etc.

Data representation and object creation
Data representation and storage has always been of prime importance to programmers. The two file formats do not have any major data differences, however, due to the fact that the .MA file is so closely related to Maya, I have run across several data translation problems. For example, the way in which both Max and Maya represent polygonal data presented a large problem. As a default, Maya always tries to use 4 edges to a face, i.e. quads. Max, however, outputs triangles by default in it’s ASCII file. To get around this, the face data output from Max is used to generate the information for the .ed in Maya by working out it’s triangular edges, for example :

*MESH_FACE 0: A: 0 B: 2 C: 3

means Face 0 has edges that join vertex 0 to vertex 2, vertex 2 to vertex 3 and vertex 3 to vertex 0. However, by default, the final edge is hidden. In this way, Max can build up shapes using triangles. This edge information is passed into the .ed section of Maya in the format 0 2 1

2 3 1

3 0 1

where the first two numbers are the edge and the final number is the edge visibility. In the default case I have set these all to 1. The face section of the Maya file then refers to these edges in the form
f 3 0 1 2

f 3 3 4 5, etc.

which then builds faces with three sides connecting edge 0 to edge 1 and to edge 2. It then builds a second face with 3 edges between edge 3, 4 and 5. In this way, Maya is effectively building a Max model.

 [image: image1.png] [image: image2.png]
 3D Studio Max Model

 Maya Model

From the test images above, it is clear that the Maya model, whilst usually based on quads is now representing an object that is based on triangles. These test images also demonstrate the camera and light representation. Both are similarly framed and the lighting is the same, however, the Maya model has no texturing information carried across with it, it has therefore, been assigned the default shading group colour, in this case, grey. (Also see examples 1 and 2 on the supplied video.)

Secondly, the way in which both file formats store rotations and key framed rotations is very different. While inside 3D Studio Max, rotations are entered in the normal way, in degrees or radians and around a local or global axis. On outputting these values, however, Max appeared initially to turn these rotations into Quaternions specifying a vector and an angle in radians, for example:

0 1 0 3.14159

or

0.4 0.6 0.7 1.57

Taking the vector and rotation values :

x=0

y=1

z=0

w=3.14159

However, it soon became apparent that the values stored by Max, were not, in fact quaternions and instead use exactly the same notation but are a vector and an angle rotated around that vector. Therefore, to calculate the XYZ rotation angles, the following code must be implemented to first find the rotation matrix:

float length=sqrt(dx*dx+dy*dy+dz*dz);

dx/=length;

dy/=length;

dz/=length;

angle=W;

RtMatrix[0][0]=dx*dx+cos(angle)*(1-dx*dx);

RtMatrix[1][0]=dx*dy*(1-cos(angle))-dz*sin(angle);

RtMatrix[2][0]=dz*dx*(1-cos(angle))+dy*sin(angle);

RtMatrix[3][0]=0;

RtMatrix[0][1]=dx*dy*(1-cos(angle))+dz*sin(angle);

RtMatrix[1][1]=dy*dy+cos(angle)*(1-dy*dy);

RtMatrix[2][1]=dy*dz*(1-cos(angle))-dx*sin(angle);

RtMatrix[3][1]=0;

RtMatrix[0][2]=dz*dx*(1-cos(angle))-dy*sin(angle);

RtMatrix[1][2]=dy*dz*(1-cos(angle))+dx*sin(angle);

RtMatrix[2][2]=dz*dz+cos(angle)*(1-dz*dz);

RtMatrix[3][2]=0;

RtMatrix[0][3]=0;

RtMatrix[1][3]=0;

RtMatrix[2][3]=0;

RtMatrix[3][3]=1;

This 4x4 matrix must then be converted to give the XYZ Euler angles using the following code :

 angle_y = H = -asin(RtMatrix[2][0]); // Calculate Y-axis angle

 I = cos(angle_y);

 if (fabs(I) > 0.005)
 // Gimball lock?

 {

 trx = RtMatrix[2][2] / I; // No, so get X-axis angle

 Try = -RtMatrix[2][1] / I;

 angle_x = atan2(Try, trx);

 trx = RtMatrix[0][0] / I; // Get Z-axis angle

 Try = -RtMatrix[1][0] / I;

 angle_z = atan2(Try, trx);

 }

 else // Gimball lock has occurred

 {

 angle_x = 0; // Set X-axis angle to zero

 trx = RtMatrix[1][1]; // And calculate Z-axis angle

 Try = RtMatrix[0][1];

 angle_z = atan2(Try, trx);

 }

angle_x=RAD2DEG(angle_x);

angle_y=RAD2DEG(angle_y);

angle_z=RAD2DEG(angle_z);

The previous code works, up to a point. Moving past 180(means that the object flips over. To counteract this, a simple for loop was written that stated, if the angle between the start and end angles was greater than 180(then add 360(to the lower of the two angles. In this way, the code now takes the shortest route to the new angle. As no directional information is passed from the Max file, it is only possible to guess which way round the rotation takes place. It is possible to rotate through 360(using this algorithm if key frames were spaced at intervals less than 180(, for example, 4 keyframes, each rotating 90(. See example 2 on the supplied video for a test using this method.

 [image: image3.png] [image: image4.png]

 3D Studio Max

 Maya

The ASE file is organised in such a way that the object is first created, assigned various properties and then animated upon. All the relevant information on a specific object is created and written together. In this way, the file becomes more user friendly. The Maya ASCII file, however, adopts a slightly different technique to object creation and manipulation. Transform nodes are defined to contain positional information on the object; it is then created and linked together. Various attributes are then set and other properties set up in the file. Animation script nodes are defined, followed by the animation itself. This animation is finally connected to the relevant object at the end of the file. This, whilst a little more confusing for the user is exactly the order that Maya itself works in, first defining parameters then connecting them to objects using the connectAttr command. This approach does, however, cause several problems for the parsing program. One of the primary functions I wanted to build into the parser was speed and thus I have always been reading in and writing the information ‘on the fly.’ This now required a slightly different approach, however, I have still maintained the overall speed of the program by only storing vital information globally, for example, the names of objects. This restriction on storage, whilst causing a few problems on various bits of key frame animation, has helped maintain the overall efficiency of the program. After experimentation, it also became apparent that the order in which the information is presented to Maya is not necessarily important. For example, the objects must obviously be created before attributes are connected to them, although after they have been created information may be assigned at any time, for example,

createNode animCurveTU -n "Teapot01_translateX";

setAttr ".tan" 9;

setAttr ".wgt" no;
setAttr -s 2 ".ktv[0:2]" 0 23.169800 15 158.299500 40 158.299500;

may be followed immediately by :

connectAttr "Teapot01_translateX.o" "Teapot01.tx";

The line does not have to be placed at the end of the file, as is the case in the Maya output files, and can instead be placed straight afterwards, thus enabling the program to free up memory, especially important if parsing a large or complex file.

In addition, the Max output file stores the absolute position in animation keyframes, but stores no information on the animation curves that are used to move the parameter from one position to another. From a graphics file format point of view, this information would not be used again by Max itself as the file format cannot be loaded back into 3D Studio, and so would have little point in printing it out. The Maya file format, however, gives the user the option to specify the actual animation curves directly inside the .MA file. Here I have used the default curve shape, roughly linear with slight ease in and out to attempt to keep some fluidity in the animation. It may be possible, in future version of this program, to export these animation curves from Max and pass them into the parser directly so the information could be used in Maya.

Although only a small difference, the way in which several sections of information were ordered caused difficulty. To illustrate, I will use the example of storing animation key frames which are stored differently in the two packages. Whilst they contain the same information, they are ordered differently; firstly the Max file stores animation line by line, e.g.

*CONTROL_POS_BEZIER {

*CONTROL_BEZIER_POS_KEY 0
4.5662
-0.9340
...

*CONTROL_BEZIER_POS_KEY 1600
4.5662
-44.7903
...

}

reads : Keyframe 1 – frame 0 – Xpos = 4.5662, Ypos = -0.9340, etc.

Keyframe 2 – frame 100 – Xpos = 4.5662, Ypos = -44.7903, etc.

The Maya format, however, stores the information :

createNode animCurveTL -n "pSphere1_translateX";

setAttr ".tan" 9;

setAttr ".wgt" no;

setAttr -s 2 ".ktv[0:1]" 1 0 20 5;

Which reads :

Sphere1 – Translate X attribute

SetAttribute “array declaration to store values” “curve interpolation values” - frame 1 – Xpos = 0 – frame 20 – Xpos =5, etc.

The information is often presented from the Max file differently, in a different order or before it is necessary when attempting to write that information on the fly into the Maya file. A slight change to the program allowed me to store data for a short amount of time and clear space quickly afterwards. For example,

counter=0;

fprintf(OutPutFilePtr, "createNode animCurveTU -n \"%s_scaleX\";\n", an);

fprintf(OutPutFilePtr, "
setAttr \".tan\" 9;\n
setAttr \".wgt\" no;");

fprintf(OutPutFilePtr, "
setAttr -s 2 \".ktv[0:%d]\"", (MaxCount-1));

 do{

fprintf(OutPutFilePtr, " %d %f", ((scaleframe[counter])/ticks), animscale[counter][0]);

counter++;

 }while (animscale[counter][0]!=NULL);

fprintf(OutPutFilePtr, ";\n\n");

Results in something like the following output:

createNode animCurveTU -n "Pyramid01_scaleX";

setAttr ".tan" 9;

setAttr ".wgt" no;

setAttr -s 3 ".ktv[0:2]" 0 -112.328796 51 77.904800 90 100.9802;

In a similar way, all other information in the ASE file may be moved and translated to .MA format. The information is first recorded and then reordered. It may then be printed out to the .MA file between various fprintf statements, in a format that can be understood by Maya. (See included code, Max2Maya.cpp, for complete reference on how various object, information and attributes are moved between platforms.)
The Program

The early incarnations of the parser program were fairly simple and were fundamentally flawed. Rather than parse through the program character by character and compare each word or symbol to a predefined token list, instead it simply fed through line by line, picking up the keywords as it passes through the file. I was, therefore, required to include several “rewind” functions which set the file pointer back to the start of the file in order to pick up the relevant information. This early approach, whilst good for testing and experimenting with the file format made it extremely difficult to pick up more than one object or mesh in the output file from Max. After several early attempts, I designed a way to get around this problem by creating a 3D array which contains 2 further 2D arrays, all were dynamic and declared at run time. Dimension 1 pointing to the name of the object and dimension 2 and 3 containing the vertices and faces respectively. This, however, proved extremely slow and very over complicated.

Therefore, after talking to my colleague, Eike Anderson and reviewing Peter Comninos’s notes on compiler writing and parsing, I decided to write a 3D Studio Max parser that takes, as input, the ASE file and reads through it recognizing certain keywords and symbols. Furthermore, some of these should be optional and some should be required, for example, it may not be necessary to have UV values taken across from the file. These keywords may then also indicate the beginning of some sort of data, for example a Vertex List, which I could then read in and either store and write everything at the end, or store and write immediately. The latter of these two options is probably the more desirable as it will allow me to free up space and remove the stored values after they are written, as some of the ASE files can be extremely large. The main difference between this Max parser and a program language parser is that it is not necessary to perform error checking. I will however, implement a small error check system that checks if the file is a Max ASE file and where { symbols should be indicating the start of some data list..

I must give due credit to both Eike Anderson and Peter Comninos as my newest version uses Eike Anderson’s major project parser template and, indeed, the GetCh() and GetSym() functions, although slightly modified for use with MAX, are almost totally his. Other functions have come from the compiler examples from Peter Comninos.

Once the initial framework is set up to extend the language understood by the parsing program, it is fairly simple to construct a skeleton program that would be capable of parsing virtually anything given to it by the .ASE file. It would also be safe to assume that any keywords the parser encounters that it is un-familiar with may be safely ignored. It is then a matter of extracting the relevant information from a file format. For example, to simply step though the program until a keyword or token is found. This symbol is compared in a switch/case statement and the necessary action taken.

The syntax used in the Max file was also of great help at this point as each batch of information is enclosed inside a left and right brace. It was, therefore, possible to step though the file and record information inside a while loop, e.g.

while(sym!=RBRACE)

 {

switch(sym)

{

case NODE_NAME:

GetSym();

if(sym==STRING)

WriteObjName();

GetSym();

break;

case MESH:

mesh();

GetSym();

break;

case TM_ANIMATION:
if(Anim==1)

{

animobj();

GetSym();

break;

}

else

{

GetSym();

break;

}

default: GetSym();

}

The way in which this code is structured also allows for some form of simple menu system embedded within the program, for example, I have implemented a feature whereby the user can specify exactly what information it is that he/she requires to move between the two packages. For example, the flag test if(Anim==1) allows the user to set flags that, in this case, mean that animation will be taken across. If the user has set this flag to be 0, then the statement will be ignored and the parser skips the animation node.

Now that the keywords have been found, the correct actions may now be taken on that information. To translate this into another file format requires simply an understanding of both file formats and knowledge of what commands in one package are the equivalent of the commands in another. The values may then simply be cut and pasted into the file using some pre-stored syntax to go around it, for example,

do{

switch (sym)

 {

case LIGHT_COLOR:float lightcol[3];

GetSym();

lightcol[0]=fval; /* VALUE ASSIGNMENT */

GetSym();

lightcol[1]=fval;

GetSym();

lightcol[2]=fval;

GetSym();

fprintf (OutPutFilePtr, "setAttr \".cl\" -type \"float3\" %f %f %f ;\n",lightcol[0], lightcol[1], lightcol[2]);

break;

/* USE VALUE TO PRINT IN MAYA FILE */

case LIGHT_INTENS:float lightints;

GetSym();

lightints=fval;

fprintf (OutPutFilePtr, "setAttr \".in\" %f ;\n",lightints);

break;

case LIGHT_FALLOFF:float lightfall;

GetSym();

lightfall=fval;

fprintf (OutPutFilePtr, "setAttr \".dro\" %f ;\n\n",lightfall);

break;

case LIGHT_HOTSPOT:float coneangle;

GetSym();

coneangle=fval;

fprintf (OutPutFilePtr, "setAttr \".ca\" %f ;\n",coneangle);

break;

default : GetSym();

 }

}while (sym!=RBRACE);

Resulting in something like the following being written into the .MA file:

createNode spotLight -n "Fspot01Shape1" -p "Fspot01";

setAttr -k off ".v";

setAttr ".cl" -type "float3" 1.000000 1.000000 1.000000 ;

setAttr ".in" 1.000000 ;

setAttr ".ca" 43.000000 ;

setAttr ".dro" 45.000000 ;

As previously stated, once this framework was in place it was simply a matter of working through the file and reverse engineering the relevant sections and working some way of moving the information around and re-ordering it from one file type to the other.

Summary of Development

This project has continually evolved during past few months. As I have researched more about the .ASE and the .MA file formats, several new approaches and new problems I had not previously considered have all presented themselves.

The program structure has progressed from the basic parser, as has been described previously, using the rewind function to parse through the file line by line, finding relevant information, to a much more advanced parser structure that can effectively read the file a word at a time and compare each word to a list of predefined keywords. The parser then takes the appropriate action based on what word is found.

Once the parser framework was in place, various features were implemented through much research on both file types. Initially I found the geometry very difficult to understand and it was only when I realised that the Max output is based on triangles and the Maya output is based on quads that I managed to begin to move information between the two packages. At the early stages, however, I only understood part of the positional matrix output by Max and could only position and scale the object in space rather than orientate it. From this base it was relatively easy to move cameras and lights between programs, however, once again, it was not until I researched into the way both Max and Maya handle rotations, that I over came a major hurdle. After much research on the Internet and various maths books I implemented a successful quaternion to euleur angles converter (see appendix B), only to test it with the Max file information and discover the angles were wrong. Further research showed that, as previously mentioned, the output from Max takes the format of quaternions but are in fact, vector angles. Solving this problem enabled me to implement orientation of objects and completed the animation keyframes passed between the two packages.

The program, in its present state can successfully convert:

· Polygonal geometry

· Lights and light information

· Cameras and camera information

· Object, light and camera orientation in space

· Animation keyframes relating to translation, rotation and scaling on polygonal objects

The framework is in place for further advancement and it would be relatively easy, with a little more time, to implement several more features into the program. The key features missing from the program that I would most like to implement are UV’s and texture information, Axis and pivot information, and skeleton information and IK animation. This information is output in the .ASE file format and from general research into the .MA file format, there is a great possibility of including these features in any future releases of Max2Maya.

Whilst producing this project I have come across several problems that relate to basic components of both packages.

Firstly, and perhaps, most importantly, there are some major differences in the cameras and camera information between the two packages. Both cameras have different attributes and information contained within them that are often not directly translatable between the 2 packages. All along, for example, the unit sizes have been very different and the units coming across from Max are much larger than those in Maya. As a result, the focal length of the cameras must be altered to stop the far clipping of the objects. I have altered this attribute in the file itself, however, Maya refuses to acknowledge this information and continues to use the default value. The Maya camera also, whilst being in the correct position and orientation, will often give a very different image out to it’s Max counterpart due to the fact that the Max and Maya focal lengths or other attributes are set up differently or simply don’t exist from one package to the other. In fact, I would say that it is an innovations project on its own trying to take cameras between two different packages. As a result, I have tried, for testing purposes, to make a default camera that the user must then tweak inside Maya. (See examples 3, 6 and 8 on the accompanying video for examples where camera problems are evident.)

Similarly with regard to lights, there are, once again, various attributes that may be successfully taken between the packages, for example, the cone width and angles, light colour and intensities, etc. However, it is clear from comparing the output renders of the two packages that lights may be handled differently at render time. In example 5 on the accompanying VHS, I have used 3 different coloured lights with varied intensities to test this and, predictably, the packages have output different images. I have also made the object in Max a similar grey to that used by the default shading group in Maya. As is clear, there are some minor differences between ways in which the two packages handle lighting. This may in fact be due to the different lighting models used in Maya and 3D Studio Max. If this is the case, a light model conversion routine could also conceivably be written. It is once again clear that the camera information is slightly distorted. The Maya camera appears to slightly squash the object in the centre of the frame, although, as is clearly shown in example 6 on the VHS, this effect is magnified the further the object travels from the camera.

 [image: image5.png] [image: image6.png]
 3D Studio Max

 Maya

These problems seem to be relatively unsolvable from a conversion point of view. Whilst it is true that with more research, the values could be altered to give a rough approximation of the camera view or light, it would still be, however, a rough approximation. There would need to be, it seems, some sort of industry standard, specifically for cameras and camera information, in which it stores only the basic camera information, for example, focal length, aperture widths, etc. which could be easily understood by any package, producing the same result. This idea, however, is unlikely to happen and it is likely to remain the job of the conversion package and programmer to produce as good an approximation as possible. As it is, my program does have a few problems, e.g. the rotations and the fact that object names cannot have spaces, etc. however, I do feel I have made a good attempt at producing a working version of a converter.

A further step for this program would also be to give it an OpenGL or Windows style interface and an object viewer or even manipulation tools, however, this might conflict with my ‘on the fly’ style of parsing the file format and instead, the information would have to be stored.

Conclusion

During the course of this project I feel I have both learned and achieved a great deal. The standalone program, Max2Maya, works well as a graphics file format converter between 3D Studio Max and Maya and I feel I have taken the program far enough to demonstrate that it is at the very least possible to translate information between two separate graphics packages.

As previously mentioned, the framework for a more complex converter package is in place. I feel with more research and time, it would conceivably be possible to produce a full program converter from 3D Studio Max to Maya, however, I feel it would be much more difficult to convert the other way. This, I believe, was one of Discreet’s primary reasons for including the .ASE ASCII export file type. They have provided the user with a simple file structure labeled in basic English that is fairly easy to parse through and gather information from. A converter taking in, as input the Maya ASCII file, however, would be extremely difficult, as the converter would have to be basically a MEL parser. However, I do not believe that Alias meant the file for this kind of purpose, and other factors, beside human readability and ease of use were considered when deciding on the format and structure for this file type. It does provide, however, an easy way to get other file types into Maya and it is fairly easy, with enough research, to both understand and convert to the Maya file format.

There are many problems involved with successful conversion of a model, animation or even a complete scene from one package to another. These range from differences in the type or format of information given in the files, or to some attributes simply not existing from one package to another. Primarily, with regard to my project, lighting models appear to differ slightly and, perhaps most importantly, there appears to be no compatible camera between the two packages. In general, however, the information is output in the ASE file format in a very nice and easy to use way and the only problems with the project as a whole were due to research difficulties and lack of resources on both the Internet and from Alias Wavefront themselves.

I feel I have tackled and have eventually overcome some major problems that are faced by programmers working in this field. I have gained a valuable insight into the internal workings of both 3D Studio Max and Maya as well as learning much about file formats in general. I have been successful in my attempt to translate certain objects and various information and attributes, and ultimately, I have succeeded in moving key frame based animation between the two packages. However, I have been forced to leave certain problems at a stage where they are only partially completed, for example, the lights work to a point, however, it is likely that they are based on different illumination models. The cameras and camera information too proved to be extremely difficult and as such, I have been forced to create a form of default camera that can merely be a close approximation of the camera used inside 3D Studio Max.

File formats are always, ultimately, going to come down to the individual or group of people that are designing them. The layout will depend on who or what is using the information and what the information will be used for. There should be, in my opinion, some sort of communication between software houses and programmers to encourage the creation of this sort of converter program, and thereby enable various packages to be used alongside each other. This is presently the case with 2D picture files and various art packages and I feel that the 2D industry has benefited from being able to do different things to an image in different packages. If this type of file is introduced in 3D I feel that more packages will support it and the industry as a whole will benefit. VRML has been an attempt to define this type of file format and whilst there is growing support for it inside programs, I feel that there is still a lot more work to be done.

In conclusion, I feel I have been successful in my attempt to build a working model that will convert basic information and animation keyframes between two packages. There are few, if any, programs available on the market at the moment that offer complete file conversion, including animation and IK, etc. however, I feel I have demonstrated that, with more research it would be possible to convert most attributes and information between any two packages.

Appendix A

General File Information

The following is based on the files MayaCube.MA and MaxCube.ASE, both contain only a simple polygon mesh sphere. It is not textured, there is no animation and only the default lighting setup in both packages.

The ASCII files that Maya generates are organized into seven sections:

 (
Header including
((Non-Procedural) File references

(Requirements

(Units

· Nodes, attributes, and parenting

· Script nodes

· Disconnections

· Connections

The ASCII files that Max generates are organized into the following sections:

· Header including

(Scene Info

(Material Info

· Geometry and Mesh data including
(Transformation data

 (Vertex positions

(Face Positions

· Misc. properties, for example, shadows and wire frame colour.

I am hoping that all will be required for converting Max to Maya files is to find the relevant information on vertex and face positions, etc. and simply move and re-organise the data, eventually saving it out as a .MA file.

The Maya files may be easily chopped down to a useable size by removing the script node information which contains machine generated information, for example, initialization of toolbars, the hypershader and other misc. UI items. This information can be safely removed and is created by Maya upon reading the file.

Detailed File Information

The ASE File Format

Based on my own research and that of others I have reached the following conclusions about the Max ASE file :

Vertex and Face Data

MESH_NUMVERTEX

This keyword is followed by an integer, this it the number of vertices in the mesh.

MESH_NUMFACES

This keyword is followed by an integer, this is the number of faces in the mesh.

MESH_VERTEX

A single vertex. Keyword followed by an integer and then three floats. The integer is the vertex index, if there are 120 vertices in the mesh the indices will range from 0

to 119. This index number is used later on for face creation. The three floats represent the position of the vertex in 3D space. They are ordered like this: X Z Y. Please

see closing notes.

MESH_FACE

A face. Keyword followed by four integers. The first integer in the group is a face index followed by a semi colon. If there are 250 faces in the mesh then the face

indices will range from 0 to 249. After the face index there will be this series like this: A: 0 B: 5 C: 4. This series represents the vertices that make up the face. Vertex

one of the face is vertex 0, vertex two is vertex 5 and vertex three is vertex 4. The number of MESH_FACE ’s that will be found in the file is equal to

MESH_NUMFACES. The AB, BC,CA sections of MESH_FACE are edge visibility flags. Nonzero if the edge is visible, zero if the edge is invisible

Normal Data

MESH_NUMVERTEX

While this keyword has nothing to do with normals it is useful. If there is normal data in the file the number of vertex normals which are contained in the file is equal to

the integer following this keyword.

MESH_VERTEXNORMAL

A Vertex normal. This keyword is followed by an integer and three floats. The integer value is an index. The range of this index will be from 0 to MESH_NUMVERTEX - 1. This index will pair of the vertex normal with the proper vertex in the mesh. The three floats represent the XYZ components of the normal. The three float values are ordered like this: X Z Y.

MESH_FACENORMAL

A normal to a face. This keyword is followed by an integer and three floats. The integer value is an index. The range of this index will be from 0 to MESH_NUMFACES – 1. This index will pair up this face normal with the correct face. The three floats represent the XYZ components of the normal. The three float values are ordered like this: X Z Y.

Texture Data

MESH_NUMTVERTEX

This keyword is followed by an integer, this is the number of texture vertices in the mesh.

MESH_NUMTVFACES

This keyword is followed by an integer, this is the number of texture faces in the mesh.

MESH_TVERT

A texture vertex. This keyword is followed by an integer and three floats. The integer value is an index. The range of this index will be from 0 to MEXH_NUMTVERTEX - 1. This index will be used in the creation of texture faces. The three floats represent the XYZ components of the texture vertex. The three float values are ordered like this: X Y Z. Note: The Z value seems to always be 0.0 so I ignore it and only use the XY pair.

MESH_TFACE

A texture face. Keyword followed by four integers. The first integer in the group is a texture face index. This index value will range from 0 to MESH_NUMTFACES. After the face index there will be this series or three integers. This series represents the texture vertices that make up the texture face. Each integer will correspond with a texture vertex.

The .MA File Format

Similarly, based on my own research on Maya .MA files :

Vertex and Face data

Vertex data is structured as an array or attribute using the command :

SetAttr –s NUMBER “.vt[0:NUMBER-1]”

Where number is the number of vertices in an object. The section in square brackets refers to the index structure, i.e. index 0-No. of vertices. This index is later referenced by the edges or .ed data structure. It is followed by 3 floats, which are the XYZ co-ordinates of the vertex, in that order.

Any time NUMBER occurs, it represents the number of elements in the array starting from 1. The array to hold this information is then declared inside the [] where 0 is the start element and NUMBER-1 is the end element. This is the same format as exists inside Mel.

SetAttr –s Number “.ed[0:Number-1]”

Where Number is the number of faces an object has. It is followed by 2 integers that form an edge referencing the vertices from the .vt list. The third integer is the toggle for the edge visibility.

SetAttr –s Number “.fc[0:Number-1]” –type “TYPE”

This line is then followed by :

f 4 -2 -37 35 5

This refers to the number of faces of an object and how they are made up. The f is followed by an integer telling Maya how many edges make up the face. In this case it is made up of four edges. The integers that follow are the index of the edge referenced from the ‘.ed’ section above. In this case the face has 4 edges, using edges 2, 37, 35 and 5. A negative number indicates travelling backwards along an edge.

	-type polyFace
	Polygon face data
Value Syntax

{"f" int {int}}
{"h" int {int}}
{"mf" int {int}}
{"mh" int {int}}
{"fc" int {int}}

Value Meaning

{"f" faceEdgeCount {edgeIdValue}}
{"h" holeEdgeCount {edgeIdValue}}
{"mf" faceUVCount {uvIdValue}}
{"mh" holeUVCount {uvIdValue}}
{"fc" faceColorCount {colorIndexValue}}

Example

// This data type (polyFace) is meant to be used in file I/O
// after setAttrs have been written out for vertex position
// arrays, edge connectivity arrays (with corresponding start
// and end vertex descriptions), texture coordinate arrays and
// color arrays. The reason is that this data type references
// all of its data through ids created by the former types.
//
// "f" specifies the ids of the edges making up a face -
// negative value if the edge is reversed in the face
// "h" specifies the ids of the edges making up a hole -
// negative value if the edge is reversed in the face
// "mf" specifies the ids of texture coordinates (uvs) for a face
// "mh" specifies the ids of texture coordinates (uvs) for a hole
// "fc" specifies the color index values for a face
//
setAttr node.polyFaceAttr -type polyFaces "f" 3 1 2 3 "fc" 3 4 4 6;

Taken from the Maya help file

	-type mesh
	Polygonal mesh
Value Syntax

{string [int {double double double}]}
{string [int {double double double}]}
[{string [int {double double}]}]
{string [int {double double string}]}

Value Meaning

"v" [vertexCount {vertexX vertexY vertexZ}]
"vn" [normalCount {normalX normalY normalZ}]
["vt" [uvCount {uValue vValue}]]
"e" [edgeCount {startVertex endVertex "smooth"|"hard"}]

Example

// "v" specifies the vertices of the polygonal mesh
// "vn" specifies the normal of each vertex
// "vt" is optional and specifies a U,V texture coordinate for each vertex
// "e" specifies the edge connectivity information between vertices
//
setAttr node.meshAttr -type mesh "v" 3 0 0 0 0 1 0 0 0 1
"vn" 3 1 0 0 1 0 0 1 0 0
"vt" 3 0 0 0 1 1 0
"e" 3 0 1 "hard" 1 2 "hard" 2 0 "hard";

Taken from the Maya help file
Appendix B

Converting quaternions to a rotation matrix

Assuming that a quaternion has been created in the form:

 Q = |X Y Z W|

Then the quaternion can then be converted into a 4x4 rotation matrix using the following expression:

 | 2 2 |

 | 1 - 2Y - 2Z 2XY - 2ZW 2XZ + 2YW |

 | |

 | 2 2 |

 M = | 2XY + 2ZW 1 - 2X - 2Z 2YZ - 2XW |

 | |

 | 2 2 |

 | 2XZ - 2YW 2YZ + 2XW 1 - 2X - 2Y |

 | |

If a 4x4 matrix is required, then the bottom row and right-most column may be added.

The matrix may be generated using the following expression:

 xx = X * X;

 xy = X * Y;

 xz = X * Z;

 xw = X * W;

 yy = Y * Y;

 yz = Y * Z;

 yw = Y * W;

 zz = Z * Z;

 zw = Z * W;

 mat[0] = 1 - 2 * (yy + zz);

 mat[1] = 2 * (xy - zw);

 mat[2] = 2 * (xz + yw);

 mat[4] = 2 * (xy + zw);

 mat[5] = 1 - 2 * (xx + zz);

 mat[6] = 2 * (yz - xw);

 mat[8] = 2 * (xz - yw);

 mat[9] = 2 * (yz + xw);

 mat[10] = 1 - 2 * (xx + yy);

 mat[3] = mat[7] = mat[11] = mat[12] = mat[13] = mat[14] = 0;

 mat[15] = 1;

Bibliography

3D Graphics File Formats – A programmers reference

Keith Rule

Mental Ray Programmers Guide

Microsoft

The RenderMan Interface Specification

Pixar

Handbook of Mathematics and Computational Science

John W Harris

Virtual Reality Systems

John Vince

The Maya help files

Alias Wavefront

Notes on the ASE file format

Nate Miller

Understanding Quaternions

GameDev.net

Quaternions FAQ

GameDev.net

� 3D Graphics File Formats – A Programmers Reference

� 3D Graphics File Formats – A Programmers Reference

� RenderMan Interface Specification

� Correspondence regarding the ASE file format from Nate Miller

� Extract from ‘Quaternions FAQ’ on GameDEV.net

PAGE
1

