
HyperMan: Seamless integration of Maya® &
RenderMan®

Avinash Sunnasy

National Centre for Computer Animation at Bournemouth University

ABSTRACT

In this paper we present a method for
combing the modelling system Maya with
the rendering system RenderMan, to provide
users with a functional, flexible modelling
rendering package that brings the user the
advanced features of RenderMan without
having to learn anything new.
We propose a method for converting scene
lighting and shading models into RenderMan
shading language that is then parsed to the
interpreter at render time.

1 Introduction

RenderMan is used in many production
houses and continues to produce work and
imagery of a notable standard, so much so
that it has won an Academy award. Many
hobbyists and an increasing number of
students are looking to produce work of an
industry standard. We find many in this
category are intimidated by the idea of
learning something completely different.
HyperMan provides users with a solution; it
is designed with ease of use in mind, whilst
retaining the important features of
RenderMan; speed, stability and quality.
With HyperMan there is nothing new to
learn, simply press render to see the
awesome results that RenderMan produces.
In section one we discuss the mathematically
principals behind the lighting and shading
techniques which are used in the HyperMan
system.
Section two describes the shading language
structure used in the HyperMan system. The
implementation principles are explored in
section three. We demonstrate the
capabilities of HyperMan in section four.
Finally section 5 contains the conclusion.

Email b1421960@bmth.ac.uk

1.1 The BRDF

The Bi-directional Reflectance Distribution
Function (BRDF) gives the reflectance of a
target as a function of illumination. This
depends on the wavelength and is
determined by the structural and optical
properties of the surface. Properties of a
surface include shadow casting, multiple
scattering, mutual shadowing, transmission,
reflection, absorption and emission by
surface elements, facet orientation
distribution and facet density.

It should be noted that the BRDF describes
what we all observe every day, i.e. that
objects look differently when view from
different directions and illuminated from
different directions. In computer graphics
today the BRDF needs to be taken into
account, to produce visually aesthetic work.
However, we often find that the BRDF is
changed in such a way that it is no longer a
physically accurate representation, but more
a method to create images with the
appropriate emphasis and impact. This is
often called non-physical optics and lighting,
almost trickery that provides an approximate
“trick.” Jim Blinn once called these tricks
“The ancient art of Chi-Ting” [1].

“In trying to improve the quality of
the synthetic images, we do not expect
to be able to display the object exactly
as it would appear in reality, with
texture, overcast shadows, etc. We
hope only to display an image that
approximates the real object closely
enough to provide a certain degree of
realism.”[2]

[1] (Blinn, 1985)
[2] (Phong, 1975)

mailto:b1421960@bmth.ac.uk

1.2 Lighting & Shading Models

Often lighting and shading is confused. By
lighting we mean the interaction between
materials and light sources and shading
designates the colour of the surface point.

1.2.1 Ambient Light Reflection

Ambient light comes from a variety of light
source it is reflected off various surfaces and
eventually reaches the surface of interest. To
simplify the model we make the assumption
that light comes equally from all directions,
this means that the ambient light has a
constant contribution and does not vary from
different viewing directions. The model for
ambient light reflection is expressed as
follows. [3]

 Ia = La . Ka

Where
Ia is the intensity of the reflected ambient
light,
La is the intensity of the incident ambient
light, i.e. the ambient light reaching the
surface and
Ka is the coefficient of ambient reflection
(i.e. the fraction of ambient light that is
reflected off the surface).

When lighting with ambient lights we get a
flat, constant appearance. The standard
RenderMan function “ambient()” contains
no illuminance loop i.e. it does not need to
reference the lights in the scene and the light
direction vector L is set to zero, this
indicated to the renderer that there is no
directionality to the light.

1.2.2 Diffuse Light Reflection

Surfaces that appear matte are composed of
randomly distributed micro-facets. When
parallel rays hit a surface they are reflected
in a random fashion and so scattering in all
directions. These surfaces are equally bright
when viewed from any direction this means
that the viewing angle is insignificant. This
is known as a diffuse or Lambertian
reflection.

[3] Cominos (2003, pg175).

“Lamberts cosine law states that the
reflected or transmitted luminous intensity in
any direction from an element of a perfectly
diffusing surface varies as the cosine of the
angle between that direction and the normal
vector of the surface. As a consequence, the
luminance of that surface is the same
regardless of the viewing angle. ” [4]

The model for diffuse light reflection can be
expressed as follows

Id = Lp . kd . cos(i) = Lp . kd . (L•N)

Where,
Id is the intensity of the reflected diffuse
light,
Lp is the intensity of the light of a point
source incident on the surface,
L is the unit vector in the direction of the
light source,
N is the unit normal vector, and
Kd is the coefficient of the diffuse reflection
(i.e. the fraction of light that is reflected
diffusely off the surface). Cominos (2003,
pg176).

The standard RenderMan “diffuse()” call
expands as follows.

color
diffuse(normal N)
{
 color C = 0;
 illuminance(P, N, PI/2)
 C += Cl *
normalize(L).N;
 return C;
} [4]

Where N is the surface normal, P is the point
on the surface and L is the light direction
vector. It is clear that the diffuse model in
RenderMan reflects the Lambert shading
model, the “illuminance” statement simply
loops through the lights in the scene.

[4] Mischler(2003, online)
[5] Pixar(2004, online)

1.2.3 Specular Light Reflection

Glossy surfaces all exhibit smooth surface
finishes; examples are mirrors, and car paint.
The angle of reflection is equal to the angle
of incidence, these are called r, I,
respectively. Glossy surfaces are never a
perfect mirror thus highlights in a mirror-like
surface will appear to fall-off. The halfway
vector between the light source direction
vector L and the viewing direction vector E
is H. The reflection model for specular light
reflection can be expressed as follows: [6]
 Is = Lp . ks . Fs(N, L, E, n)
Where,
Is is the intensity of the reflected specular
light,
Lp is the intensity of the light of a point
source incident on the surface,
L is the unit vector in the direction of the
light source,
E is the unit vector in the direction of the
viewer,
N is surface unit normal vector,
n is the specular sharpness, i.e. the fraction
of specular light that is reflected off the
surface).
Fs is the speculat reflection function, and
Ks is the coefficient of specular reflection
(i.e. the fraction of specular light that is
reflected off the surface). Cominos (2003,
pg177).

The specular reflection function Fs() can be
calculated by Blinn’s specular method.

1.2.3.1 Blinn Shading

Blinn’s specular method was based on
Horn’s with furthermore simplification.
In Blinn’s method the specular reflection
function is given by Fs(N, L, E, n) = cos(g)ⁿ

Where N is known and H is the halfway
vector between E and L. So

H = (E + L) / |E +L|

This means that the specular function can be
computed as
Fs (N, L, E, n) = (N ·H) ⁿ

[6] Cominos (2003, pg177).

The standard RenderMan “specular()” call is
as follows
color
specular(normal N; vector V;
float roughness)
{
 color C = 0;
 illuminance(P, N, PI/2)
 C += Cl *
specularbrdf(normalize(L), N, V,
roughness);
 return C;
}

Which expands furthermore to ,

color specularbrdf(vector L, N,
V; float roughness)
{
 vector H = normalize(L+V);
 return pow(max(0, N.H),
1/roughness);
}[7]
Again we find that the RenderMan function
implements Blinn’s specular method, H is
the halfway vector, L is the light direction
vector, and N is the surface normal.
However Maya uses the Torrance - Sparrow
specular method that was described by Blinn
is his 1978 paper. Torrance - Sparrow
originally suggested the theoretically
approach for calculating the specular model
in 1967. This method attempts to provide a
more physical model for specular reflections
from real surfaces. It considers that intensity
of specular highlights is dependent on the
incident direction relative to normal. The
Torrance & Sparrow method takes into
account of micro-faceted surfaces instead of
considering each surface to be completely
smooth as with previous specular methods.
As in the Lambertian model it was assumed
that the diffuse component comes from
multiple reflections between facets and from
internal scattering. It is also assumed that the
specular component comes from the facets
orientation in the direction H (the half way
vector).

[7] Pixar(2004, online)

The Torrance – Sparrow methods is as
follows.

Is = DGF / (N·V) [8]

D is the distribution function of the micro
facet directions on the surface.
G is the amount that facets shadow and mask
each other.
F is the Fresnel reflection law.
N is the surface normal.
V is the reflecting vector.
The distribution function D expands as
follows, this is a simple Gaussian
distribution function

D = e -(sa)2

a is the deviation angle from halfway vector,
H.
s is the standard deviation.
e is the eccentricity

The values that are outputted form a shiny
surface if the value is small and dull surfaces
if the value is big.
We divide DGF by (N.V) to account for the
fact that the observer see’s more when the
surface is tilted and so it is the intensity
proportional to the number of facets in H
direction.

The geometric attenuation factor G was
described by Blinn in his paper. It basically
accounts for three cases when light rays
interfere with the mirco-facets, these are

a) no interference,
b) b) partial interference of reflected

light and
c) c) partial interception of incident

light. The geometric attenuation
factor expands as follows

G = min { 1, B, C}

Where

B = 2(N.H)(N.V)

(V.H)
C= 2(N.H)(N.L)
 (V.H)

[8] Owen (1999, online)

The Fresnel term F accounts for changes in
color to the specular highlight.
The fresnel function F expands as follows

F = 1 sin² (θì – θt) {1+ cos²(θì + θt)}
 2 sin²(θì + θt) {1+ cos²(θì - θt)}
θί=1/ cos(L.H) = 1/cos(V.H)
siӨt = sinӨ/η

Where Өt is the angle of refraction and η is
the refractive index of the surface material.

However, processing sin and cos is a costly
computation therefore within the Blinn
shader we use a Fresnel approximation.

Fn = pow((1 - VH), 3);
Ff = Fn + (1 - Fn) *
specularRollOff;

Where VH = V.H, and V is the reflecting
vector and H is the halfway vector between
the surface normal N and V.

1.2.3.2 Phong Lighting

The phong illumination model has no
physical basis but it able to compute
specular falloff. The phong illumination
model is defined by,

Lr = Lra + Lrd + Lrs

ĸe

Lr = kaLi,a+kd∑Ll(I . N) + ks ∑L(R(I).
V)

Where
ke is the eccentricity,
Lr, La, Ld, Ls are the lights reflection,
ambient, diffuse, and specular components
respectively.
ka, kd, ks are the surface’s ambient, diffuse,
and specular components respectively.
I is the incident vector.
R is the reflection vector.

[9] Cominos (2003, pg178).

This function simply says for each light
source perform the Phong lighting model.
Now let us examine the RenderMan phong
implementation.
color
phong(point N, V; float size)

{
 color C = 0;
 point Ln, R;
 R=reflect(-normalize(V),
normalize(N));
illuminance(P, N, PI/2)
{
Ln = normalize ; (L)
C += Cl * pow(max(0.0,R.Ln),
size); }
 return C;
}[10]
Again we find that the implementations are
the same, note that the illuminance loop will
iterate through all the lights, at point P, using
the surface normal N and in the direction of
PI/2.

1.2.3 Ward’s Anisotropic Model

In 1992, Ward proposed a method for the
simulation of anisotropic surfaces. An
anisotropic surface will reflect light is a
directional manner due to fine detail on the
surface that is too fine to render, examples of
anisotropic surfaces are vinyl records and
compact disks. Maya supports anisotropic
shading models and we implement Wards
illumination model. The Ward illumination
model is an extension of Pierre Poulin [11],
and Alain Fourier’s model for anisotropic
surfaces. The Ward[12] illumination model
is as follows.

Fr= Pd/π +Ps 1 .
exp[-tan²δ(cos²ơ/ax² + sin²ø/ay²)]
 √cosθί cosθr
 4 π ax ay
Where Pd is the diffuse reflectance
Ps is the specular reflectance
ax is the standard deviation of the slope in
the x direction.
ay is the standard deviation of the slope in
the y direction.

[10] Pixar (2004, online)
[11] Poulin and Fourier (1990, 273 -282)
[12 Ward(1992, 265 –272)

δ is the angle between the halfway vector
and the surface normal
ơ is the azimuth angle of the half vector
projected onto the surface plane

Again we have to eliminate the cosine and
sine operators for performance, so we
substitute in the dot product and the cross
product. The following equation is used
within our RenderMan representation of
Ward’s illumination model.

Fr= Pd/π +Ps 1 .
exp(-tan²< (H,N)/ σ²)
 √(L.N)(V.N)
 4 π σ²

Where
Pd is the diffuse reflectance
Ps is the specular reflectance
σ² (σx, σy) is the standard deviation of the
slope in the x direction and y direction
respectively.
L is the light direction vector
N is the surface normal
V is the reflecting vector
H is the halfway vector

2 Shade Trees & RenderMan
Shading Language

Previously we have been using a static
equation to describe the lighting and shading
appearances. These models mean that all
surfaces are grouped into specific models.
In his 1984 paper, Cook[13] developed the
idea of shade trees. The paper introduced a
flexible tree like structure that can represent
many surface appearances. This is a very
powerful model that allows the user to
develop complex shading models using a
“shading language” without having to delve
into the actual framework of the rendering
program. Perlin[14] implemented the shade
tree language with a flow of control in 1985.
A shade tree consists of a variety of nodes
that are organised in a tree structure. The
evaluation of a shade tree provides the
resultant color of a point on a surface.

[13] Cook (1984, 223 - 231)
[14] Perlin (1985, 287 - 296)

However, to describe a complex surface
appearance using a shade tree becomes quite
unwieldy. Shade tree’s were soon developed
into a programmable shading language and
this most noticible in RenderMan Shading
Language, developed by Pat Hanrahan[15]
in the RenderMan specification in 1989,
later Hanrahan and Lawson developed the
shading language compiler. An example
shade tree for a plastic shader might look
like the following.

Figure 1 Plastic Shading Model

In RenderMan, this provides a small set of
high level data types, with a full set of
control structures as well as mathematical
and shading functions. These set of functions
are built-in to the shading laguage compiler,
the shader interpreter implements these
shaders at run-time. These functions are
sometimes called shadeops. The interpreter
executes as a virtual SIMD (single
instruction, multiple data) vector math unit.
The shader instructions are interpreted one at
a time on all vertices. This is far more
effiecient than running the entire shader on
each vertex separately. However, to ensure
that conditional instructions are evaluated
properly the SIMD controller has run flags
that flag the vertices as active or inactive.
Another advantage is that information on the
neighbourhood is available for most vertices.
This allows differentials to be computed.
Those vertices with less than four
neighbours are estimated [16].

[15] Hanrahan (1989)
[16] Apodaca and Gritz (1999, pg 139)

3 Implementing the HyperMan
system

The HyperMan system allows for the
automated translation of Maya materials into
RenderMan shaders. Maya’s highly
programmable and customisable format
provides an excellent method to extract
appearances from Maya and translate these
into RenderMan via the node structure built
into Maya (HyperGraph Nodes).
More information is available in the technical
documentation.

3.1 Converting Textures

When a material is constructed in Maya a set
of nodes are generated to form a structure
that is able to descibe the surface
appearance. Using the DAG (Directed
Acyclic Graph), we are able to view the
entire scene construction. However it is clear
that only shading nodes need to be
considered.

Converting the textures into a shading
language format is simple. Using the shading
models outlined in section one we construct
the RenderMan shading language equivalent.
The high functionality on the RenderMan
shading language allows us to “plug”
anything into the equation to give a variety
of results.

In order to simplify the shading model we
use texture maps to convert child nodes in a
Maya shading tree. This makes the solution
very simple, as we don’t have to create a
shading function equivalent to generate
maps, allowing us to skip over the need to
calculate computations based on attributes
and node type. The basic process for
converting a Maya shading group into a
RenderMan shader is as follows.

1. For each surface appearance (i.e
Blinn, Lambert etc) create a base
RenderMan equivalent.

2. For each Maya attribute create the
equivalent processing function e.g. if
we want to map the translucency in
Maya to a ramp, we have an
equivalent function we takes data
and processes it in the same way.

3. Within Maya iterate through the first
set of children connected to a
shader, determine the UV
placement, and then convert the
node into a texture map.

4. We then convert the outputted map
into a RenderMan texture file.

5. We pass the file names of the
RenderMan textures to RenderMan
base shader equivalent.

6. By determining the placement we
can imitate Maya’s 2D and 3D
placement nodes using the shading
language call texture() or
environment()

7. Render the scene via MTOR.

The philosophy behind the system is
essentially very basic, but it provides a
efficient conversion method via the use of
texture calls.

3.2 Advanced Features

The HyperMan system also incorporates
many advanced features that exploit the
functionality of RenderMan to provide users
with full customisation. The system
incorporates will automate the process of
generating complex features which are
unavailable to Maya’s software renderer. It
also matches the Mental Ray features, such
as Final Gather. The below table provides a
comparison between the HyperMan system,
Maya software, and Mental Ray.

Feature Maya

Software
 Mental Ray HyperMan

Anti Aliasing Supported Supported Supported
Raytracing Supported Supported Supported
Motion Blur Supported Supported Supported
Multi Processing Supported Supported Supported
Layers Supported Supported Supported
Caustics Unsupported Supported Supported
Global Illumination Unsupported Supported Supported
Final Gather Unsupported Supported Supported
Ambient Occlusion Unsupported Supported Supported
Irradiance Unsupported Supported Supported
Image Based
Illumination

Unsupported Supported Supported

Custom Layer N/A Unsupported Supported
Custom shader N/A Unsupported Supported
Caching Supported Supported Supported
Animation Caching Unsupported Unsupported Supported

Figure 2 Comparing the systems

3.2.1 Custom Layers/Shaders

The HyperMan system allows users to create
a shader using RenderMan shading language
and integrates it into the scene. This
expands the functionality of the system and
will allow for new features available in
RenderMan to be incorporated effortlessly.

Using RenderMan AOV’s (arbitrary output
variables), we can create a shader and create
a custom Layer. For example if we want to
output the surface normal, we create a
shader in RenderMan shading language. By
giving HyperMan the absolute path to the
compiled shader we, and a selection set
which holds the objects that the shader is to
be attached to, we can generate a custom
pass.
However the limitations are that the
HyperMan shaders will not support the
AOV, i.e. any surface that isn’t attached to
the custom shader wont generate a new pass.

3.2.2 Animation Caching

RenderMan now supports many-advanced
ray tracing features, to exploit this we allow
the use of cache files. Mental Ray also
supports cache file however although they
are camera independent the process needs to
be recalculated if an object moves.
This is where HyperMan provides an
improved method for caching. A cache is
generated for an animation x (user specified)
amount of times, we then combine these
cache files into one file and force the
shader to lookup the cache. This initial
process can be be slow but then rendering
the animation is fast as no ray tracing
calculations are made.

Fig 3 Occlusion for keyframe 1
(dragons1.ocf)

Fig 4 Occlusion for keyframe 2
(dragons2.ocf)

Fig 5 Occlusion for keyframe 3
(dragons3.ocf)

Fig 6 Combined occlusion data
(dragonsall.ocf)[17]

[17] Pixar(2004, online)

4 Results from HyperMan

Below are a few examples of HyperMan’s
capability in comparison to the Maya
Software Renderer and Mental Ray.

Fig 7 Maya Software Raytrace Production

Fig 8 Mental Ray Final Gather

Fig 9 HyperMan Average Quality

 5 Conclusion & Improvements

The system is far off perfect, and needs to
more efficient method of extracting data
from Maya, the obvious solution is to use
the Maya API that allows iterating through
the DAG, without having to query
connections. In this implementation for each
shader all connections need to be queried, by
using the API we can use a MFNiterator
which gives us the ability to move down the
DAG heirachy without having to perform
any processing. However we would still
need to use MEL to convert the nodes into
texture files.

MayaMan a system developed by Animal
Logic will create new shaders on the fly in
correspondance to the shading network. This
is a better approach although due to time
restrictions I was unable to recreate each
node in shading language.

Pixar are producing a system that integrates
Maya with RenderMan. HyperMan
integrates into Maya in seamlessly and from
a user point of view (in terms of interaction)
there are hardly any differences between the
two systems. HyperMan still uses MTOR,
and this is where HyperMan has added
functionality, as it uses the Alfred to render,
which allows us to utilize the network
rendering capabilities of RenderMan.

The system has limitations, to system is not
portable to RenderMan compliant renderers
and so it requires Maya, MTOR (maya to
renderman plug-in), and RenderMan. The
solution would be to redevelop the system to
write shaders on the fly and then parse the
rib looking for each surface’s identity
attribute and then replacing the surface
attribute with our new shader.

Release paper available
User documentation available
Technical documentation available

6 References

Apodaca, A. A. AND Gritz , L., 1999 Advanced
RenderMan. San Francisco: Morgan Kaufmann.

Blinn, J., 1977, Models of Light Reflection for
Computer Synthesized Pictures,
SIGGRAPH 77, pp 192-198.

Cominos, P., 2003, Mathematical and Computer
Programming Techniques for Computer
Graphics. Bournemouth: Bournemouth
University, England

Cook, R. L., 1984 , Shade Trees SIGGRAPH 84,
pp 223- 231

Hanrahan, P. 1989, RenderMan Interface
Specification

Hart, J. C. 2003, Advanced Topics in Computer
Graphics. Illinois: University of Illinois

Miscler, G. 1998, Lighting Knowledge Database
[online] München, Germany Available from
http://www.schorsch.com/kbase/glossary/lambert
ian_surface.html [Accessed 25 Feburary 2005]

Owen, S. G. 1999, Jim Blinn Model For Specular
Reflection [online] Georgia: Georgia State
University Available from
http://www.siggraph.org/education/materials/Hy
perGraph/illumin/specular_highlights/blinn_mod
el_for_specular_reflect_1.htm [Accessed 26
February 2005]

Perlin, K. 1895 An Image Synthesizer ACM
Computer Graphics, New York: New York
University Media Research Labs

Phong, B. T. 1973 Illumination for Computer
Generated Images, Utah: Utah Computer Science
Dept.

Pixar 2004 [online] RenderMan Documentation
Available from https://renderman.pixar.com/
products/rispec/rispec_pdf/RISpec3_1.pdf
[Acessed 26 February 2005]

Poulin, P. and Fourier, A. 1990, A Model For
Anisotropic Reflection, Siggraph 90, pp 273 –
282

Seidel, H. P. and Myszkowski, K. 2004,
Computer Graphics: Light Transport 2,

Saarbrucken, Germany [online] Available from
http://www.mpi-
sb.mpg.de/units/ag4/teaching/uebung/lecture14.p
df [Accessed 26 February 2005]

Stephenson, I. 2003, Essential RenderMan Fast
London: Springer

Ward, G. 1992, Measuring and Modelling
Anisotropic Reflections. Siggraph 92 pp 3-7

Wynn, C. An Introduction to BRDF lighting
[online] Available from
http://download.nvidia.com/developer/presentati
ons/2004/Eurographics/EG_04_TutorialNotes.pd
f [Accessed 1 March 2005]

The RenderMan ® Interface Procedures and RIB
Protocol are:
 Copyright 1988, 1989, Pixar. All rights
reserved.
 RenderMan (R) is a registered trademark of
Pixar.

Maya ® ©Copyright 2005 Alias Systems Corp.
All rights reserved.

MayaMan ® Copyright 2005 Animal Logic.
All rights reserved.

http://www.schorsch.com/kbase/glossary/lambertian_surface.html
http://www.schorsch.com/kbase/glossary/lambertian_surface.html

	Avinash Sunnasy
	National Centre for Computer Animation at Bournemouth University
	
	ABSTRACT
	1 Introduction
	L is the unit vector in the direction of the light source,
	H = (E + L) / |E +L|
	Fs (N, L, E, n) = (N ·H) ⁿ
	G = min { 1, B, C}
	F = 1 sin² (θì – θt) {1+ cos²(θì + θt)}
	Lr, La, Ld, Ls are the lights reflection, ambient, diffuse, and specular components respectively.
	2 Shade Trees & RenderMan Shading Language
	6 References

