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ABSTRACT 
 
In this paper we present a method for 
combing the modelling system Maya with 
the rendering system RenderMan, to provide 
users with a functional, flexible modelling 
rendering package that brings the user the 
advanced features of RenderMan without 
having to learn anything new. 
We propose a method for converting scene 
lighting and shading models into RenderMan 
shading language that is then parsed to the 
interpreter at render time. 
 
1 Introduction 
 
RenderMan is used in many production 
houses and continues to produce work and 
imagery of a notable standard, so much so 
that it has won an Academy award. Many 
hobbyists and an increasing number of 
students are looking to produce work of an 
industry standard. We find many in this 
category are intimidated by the idea of 
learning something completely different. 
HyperMan provides users with a solution; it 
is designed with ease of use in mind, whilst 
retaining the important features of 
RenderMan; speed, stability and quality. 
With HyperMan there is nothing new to 
learn, simply press render to see the 
awesome results that RenderMan produces. 
In section one we discuss the mathematically 
principals behind the lighting and shading 
techniques which are used in the HyperMan 
system.  
Section two describes the shading language 
structure used in the HyperMan system. The 
implementation principles are explored in 
section three. We demonstrate the 
capabilities of HyperMan in section four. 
Finally section 5 contains the conclusion. 
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1.1 The BRDF  
 
The Bi-directional Reflectance Distribution 
Function (BRDF) gives the reflectance of a 
target as a function of illumination. This 
depends on the wavelength and is 
determined by the structural and optical 
properties of the surface. Properties of a 
surface include shadow casting, multiple 
scattering, mutual shadowing, transmission, 
reflection, absorption and emission by 
surface elements, facet orientation 
distribution and facet density. 
 
It should be noted that the BRDF describes 
what we all observe every day, i.e. that 
objects look differently when view from 
different directions and illuminated from 
different directions. In computer graphics 
today the BRDF needs to be taken into 
account, to produce visually aesthetic work. 
However, we often find that the BRDF is 
changed in such a way that it is no longer a 
physically accurate representation, but more  
a method to create images with the 
appropriate emphasis and impact. This is 
often called non-physical optics and lighting, 
almost trickery that provides an approximate 
“trick.”  Jim Blinn once called these tricks 
“The ancient art of Chi-Ting” [1].  

 
“In trying to improve the quality of 
the synthetic images, we do not expect 
to be able to display the object exactly 
as it would appear in reality, with 
texture, overcast shadows, etc.  We 
hope only to display an image that 
approximates the real object closely 
enough to provide a certain degree of 
realism.”[2] 

 
[1] (Blinn, 1985) 
[2] ( Phong, 1975) 
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1.2 Lighting & Shading Models 
 
Often lighting and shading is confused. By 
lighting we mean the interaction between 
materials and light sources and shading 
designates the colour of the surface point. 
 
1.2.1 Ambient Light Reflection 
 
Ambient light comes from a variety of light 
source it is reflected off various surfaces and 
eventually reaches the surface of interest. To 
simplify the model we make the assumption 
that light comes equally from all directions, 
this means that the ambient light has a 
constant contribution and does not vary from 
different viewing directions. The model for 
ambient light reflection is expressed as 
follows. [3] 
 
 Ia = La . Ka 
 
Where   
Ia is the intensity of the reflected ambient 
light, 
La is the intensity of the incident ambient 
light, i.e. the ambient light reaching the 
surface and  
Ka is the coefficient of ambient reflection 
(i.e. the fraction of ambient light that is 
reflected off the surface). 
 
When lighting with ambient lights we get a 
flat, constant appearance. The standard 
RenderMan function “ambient()” contains 
no illuminance loop i.e. it does not need to 
reference the lights in the scene and the light 
direction vector L is set to zero, this 
indicated to the renderer that there is no 
directionality to the light. 
 
1.2.2 Diffuse Light Reflection 
 
Surfaces that appear matte are composed of 
randomly distributed micro-facets. When 
parallel rays hit a surface they are reflected 
in a random fashion and so scattering in all 
directions. These surfaces are equally bright 
when viewed from any direction this means 
that the viewing angle is insignificant. This 
is known as a diffuse or Lambertian 
reflection.  
 
[3] Cominos (2003, pg175).

“Lamberts cosine law states that the 
reflected or transmitted luminous intensity in 
any direction from an element of a perfectly 
diffusing surface varies as the cosine of the 
angle between that direction and the normal 
vector of the surface. As a consequence, the 
luminance of that surface is the same 
regardless of the viewing angle. ” [4] 
 
The model for diffuse light reflection can be 
expressed as follows 
 
Id = Lp . kd . cos(i) = Lp . kd . (L•N) 
 
Where, 
Id is the intensity of the reflected diffuse 
light, 
Lp is the intensity of the light of a point 
source incident on the surface, 
L is the unit vector in the direction of the 
light source, 
N is the unit normal vector, and  
Kd is the coefficient of the diffuse reflection 
(i.e. the fraction of light that is reflected 
diffusely off the surface). Cominos (2003, 
pg176). 
 
The standard RenderMan “diffuse()” call 
expands as follows. 
 
color 
diffuse( normal N ) 
{ 
 color C = 0; 
 illuminance( P, N, PI/2 ) 
     C += Cl * 
normalize(L).N; 
 return C; 
} [4] 
 
 
Where N is the surface normal, P is the point 
on the surface and L is the light direction 
vector.  It is clear that the diffuse model in 
RenderMan reflects the Lambert shading 
model, the “illuminance” statement simply 
loops through the lights in the scene.  
 
[4] Mischler(2003, online) 
[5] Pixar(2004, online) 
 
 
 
 
 



1.2.3 Specular Light Reflection 
 
Glossy surfaces all exhibit smooth surface 
finishes; examples are mirrors, and car paint. 
The angle of reflection is equal to the angle 
of incidence, these are called r, I, 
respectively. Glossy surfaces are never a 
perfect mirror thus highlights in a mirror-like 
surface will appear to fall-off. The halfway 
vector between the light source direction 
vector L and the viewing direction vector E 
is H. The reflection model for specular light 
reflection can be expressed as follows: [6] 
 Is = Lp . ks . Fs(N, L, E, n)  
Where, 
Is is the intensity of the reflected specular 
light, 
Lp is the intensity of the light of a point 
source incident on the surface, 
L is the unit vector in the direction of the 
light source, 
E is the unit vector in the direction of the 
viewer, 
N is surface unit normal vector, 
n is the specular sharpness, i.e. the fraction 
of specular light that is reflected off the 
surface). 
Fs is the speculat reflection function, and  
Ks is the coefficient of specular reflection 
(i.e. the fraction of specular light that is 
reflected off the surface). Cominos (2003, 
pg177). 
 
The specular reflection function Fs() can be 
calculated by Blinn’s specular method. 
 
1.2.3.1 Blinn Shading 
 
Blinn’s specular method was based on 
Horn’s with furthermore simplification. 
In Blinn’s method the specular reflection 
function is given by Fs(N, L, E, n) = cos(g)ⁿ 
 
Where N is known and H is the halfway 
vector between E and L. So 
 
H = (E + L) / |E +L| 
 
This means that the specular function can be 
computed as  
Fs (N, L, E, n) = (N ·H) ⁿ 
 
[6] Cominos (2003, pg177). 
 
 

The standard RenderMan “specular()” call is 
as follows 
color 
specular( normal N; vector V; 
float roughness ) 
{ 
 color C = 0; 
 illuminance( P, N, PI/2 )  
     C += Cl * 
specularbrdf(normalize(L), N, V, 
roughness); 
 return C; 
} 
 
Which expands furthermore to , 
 
color specularbrdf(vector L, N, 
V; float roughness) 
{ 
    vector H = normalize(L+V); 
    return pow(max(0, N.H), 
1/roughness); 
}[7] 
Again we find that the RenderMan function 
implements Blinn’s specular method, H is 
the halfway vector, L is the light direction 
vector, and N is the surface normal. 
However Maya uses the Torrance - Sparrow 
specular method that was described by Blinn 
is his 1978 paper. Torrance - Sparrow 
originally suggested the theoretically 
approach for calculating the specular model 
in 1967. This method attempts to provide a 
more physical model for specular reflections 
from real surfaces. It considers that intensity 
of specular highlights is dependent on the 
incident direction relative to normal. The 
Torrance & Sparrow method takes into 
account of micro-faceted surfaces instead of 
considering each surface to be completely 
smooth as with previous specular methods. 
As in the Lambertian model it was assumed 
that the diffuse component comes from 
multiple reflections between facets and from 
internal scattering. It is also assumed that the 
specular component comes from the facets 
orientation in the direction H (the half way 
vector).  
 
[7] Pixar(2004, online) 
 
 
 
 
 
 
 



The Torrance – Sparrow methods is as 
follows. 
 
Is = DGF / (N·V) [8] 
 
D is the distribution function of the micro 
facet directions on the surface. 
G is the amount that facets shadow and mask 
each other. 
F is the Fresnel reflection law. 
N is the surface normal.  
V is the reflecting vector. 
The distribution function D expands as 
follows, this is a simple Gaussian 
distribution function 

D = e -(sa)2   

a is the deviation angle from halfway vector, 
H. 
s  is the standard deviation. 
e is the eccentricity 
 
The values that are outputted form a shiny 
surface if the value is small and dull surfaces 
if the value is big. 
We divide DGF by (N.V) to account for the 
fact that the observer see’s more when the 
surface is tilted and so it is the intensity 
proportional to the number of facets in H 
direction. 
 
The geometric attenuation factor G was 
described by Blinn in his paper.  It basically 
accounts for three cases when light rays 
interfere with the mirco-facets, these are  

a) no interference,  
b) b) partial interference of reflected 

light and  
c) c) partial interception of incident 

light. The geometric attenuation 
factor expands as follows 

 
G = min { 1, B, C} 
 
Where 
 
B = 2(N.H)(N.V)

(V.H) 
C= 2(N.H)(N.L)
 (V.H) 
 
 
[8] Owen (1999, online) 
 
 

The Fresnel term F accounts for changes in 
color to the specular highlight. 
The fresnel function F expands as follows 
 
F = 1 sin² (θì – θt) {1+ cos²( θì + θt)}
      2 sin²(θì + θt) {1+ cos²( θì - θt)} 
θί=1/ cos(L.H) = 1/cos(V.H) 
siӨt = sinӨ/η 
 
Where Өt  is the angle of refraction and η is 
the refractive index of the surface material. 
 
However, processing sin and cos is a costly 
computation therefore within the Blinn 
shader we use a Fresnel approximation.  
 
Fn = pow((1 - VH), 3); 
Ff = Fn + (1 - Fn) * 
specularRollOff; 
 
Where VH = V.H, and V is the reflecting 
vector and H is the halfway vector between 
the surface normal N and V. 
 
1.2.3.2 Phong Lighting 
 
The phong illumination model has no 
physical basis but it able to compute 
specular falloff. The phong illumination 
model is defined by,    
 
Lr = Lra + Lrd + Lrs     

 
ĸe 

Lr = kaLi,a+kd∑Ll(I . N) + ks ∑L(R(I). 
V) 
 
Where  
ke is the eccentricity, 
Lr, La, Ld, Ls are the lights reflection, 
ambient, diffuse, and specular components 
respectively. 
ka, kd, ks are the surface’s ambient, diffuse, 
and specular components respectively. 
I is the incident vector. 
R is the reflection vector. 
 
 
[9] Cominos (2003, pg178). 
 
 
 
 
 
 



This function simply says for each light 
source perform the Phong lighting model. 
Now let us examine the RenderMan phong 
implementation. 
color
phong( point N, V; float size ) 

 

{ 
 color C = 0; 
 point Ln, R; 
 R=reflect(-normalize(V), 
normalize(N) ); 
illuminance( P, N, PI/2 )  
{ 
Ln = normalize ; (L)
C += Cl * pow(max(0.0,R.Ln), 
size); } 
 return C; 
}[10] 
Again we find that the implementations are 
the same, note that the illuminance loop will 
iterate through all the lights, at point P, using 
the surface normal N and in the direction of 
PI/2. 
 
1.2.3 Ward’s Anisotropic Model 
 
In 1992, Ward proposed a method for the 
simulation of anisotropic surfaces. An 
anisotropic surface will reflect light is a 
directional manner due to fine detail on the 
surface that is too fine to render, examples of 
anisotropic surfaces are vinyl records and 
compact disks. Maya supports anisotropic 
shading models and we implement Wards 
illumination model. The Ward illumination 
model is an extension of Pierre Poulin [11], 
and Alain Fourier’s model for anisotropic 
surfaces. The Ward[12] illumination model 
is as follows. 
 
Fr= Pd/π +Ps   1  . 
exp[-tan²δ(cos²ơ/ax² + sin²ø/ay²)] 
  √cosθί cosθr  
  4 π ax ay 
Where  Pd is the diffuse reflectance 
Ps is the specular reflectance 
ax is the standard deviation of the slope in 
the x direction. 
ay is the standard deviation of the slope in 
the y direction. 
 
[10] Pixar (2004, online)  
[11] Poulin and Fourier (1990, 273 -282) 
[12 Ward(1992, 265 –272) 
 
 

δ  is the angle between the halfway vector 
and the surface normal 
ơ is the azimuth angle of the half vector 
projected onto the surface plane 
 
Again we have to eliminate the cosine and 
sine operators for performance, so we 
substitute in the dot product and the cross 
product. The following equation is used 
within our RenderMan representation of 
Ward’s illumination model. 
 
Fr= Pd/π +Ps   1  . 
exp(-tan²< (H,N)/ σ²) 
  √(L.N)(V.N)  
 4 π σ² 
 
Where  
Pd is the diffuse reflectance 
Ps is the specular reflectance 
σ² (σx, σy) is the standard deviation of the 
slope in the x direction and y direction 
respectively. 
L is the light direction vector 
N is the surface normal 
V is the reflecting vector  
H is the halfway vector 
 
2 Shade Trees & RenderMan 
Shading Language 
 
Previously we have been using a static 
equation to describe the lighting and shading 
appearances. These models mean that all 
surfaces are grouped into specific models.   
In his 1984 paper, Cook[13] developed the 
idea of shade trees. The paper introduced a 
flexible tree like structure that can represent 
many surface appearances. This is a very 
powerful model that allows the user to 
develop complex shading models using a 
“shading language” without having to delve 
into the actual framework of the rendering 
program.  Perlin[14] implemented the shade 
tree language with a flow of control in 1985. 
A shade tree consists of a variety of nodes 
that are organised in a tree structure. The 
evaluation of a shade tree provides the 
resultant color of a point on a surface.  
 
[13] Cook (1984, 223 - 231) 
[14] Perlin (1985, 287 - 296) 
 
 



However, to describe a complex surface 
appearance using a shade tree becomes quite 
unwieldy. Shade tree’s were soon developed 
into a programmable shading language and 
this most noticible in RenderMan Shading 
Language, developed by Pat Hanrahan[15] 
in the RenderMan specification in 1989, 
later Hanrahan and Lawson developed the 
shading language compiler. An example 
shade tree for a plastic shader might look 
like the following. 
 

 
Figure 1 Plastic Shading Model 

 
In RenderMan, this provides a small set of 
high level data types, with a full set of 
control structures as well as mathematical 
and shading functions. These set of functions 
are built-in to the shading laguage compiler, 
the shader interpreter implements these 
shaders at run-time. These functions are 
sometimes called shadeops. The interpreter 
executes as a virtual SIMD (single 
instruction, multiple data) vector math unit. 
The shader instructions are interpreted one at 
a time on all vertices. This is far more 
effiecient than running the entire shader on 
each vertex separately. However, to ensure 
that conditional instructions are evaluated 
properly the SIMD controller has run flags 
that flag the vertices as active or inactive. 
Another advantage is that information on the 
neighbourhood is available for most vertices. 
This allows differentials to be computed. 
Those vertices with less than four 
neighbours are estimated [16]. 
 
[15] Hanrahan (1989) 
[16] Apodaca and Gritz (1999, pg 139) 
 
 
 
 
 

3 Implementing the HyperMan 
system 
 
The HyperMan system allows for the 
automated translation of Maya materials into 
RenderMan shaders. Maya’s highly 
programmable and customisable format 
provides an excellent method to extract 
appearances from Maya and translate these 
into RenderMan via the node structure built 
into Maya (HyperGraph Nodes).   
More information is available in the technical 
documentation. 
 
3.1 Converting Textures 
 
When a material is constructed in Maya a set 
of nodes are generated to form a structure 
that is able to descibe the surface 
appearance. Using the DAG (Directed 
Acyclic Graph), we are able to view the 
entire scene construction. However it is clear 
that only shading nodes need to be 
considered.  
 
Converting the textures into a shading 
language format is simple. Using the shading 
models outlined in section one we construct 
the RenderMan shading language equivalent. 
The high functionality on the RenderMan 
shading language allows us to “plug” 
anything into the equation to give a variety 
of results.   
 
In order to simplify the shading model we 
use texture maps to convert child nodes in a 
Maya shading tree. This makes the solution 
very simple, as we don’t have to create a 
shading function equivalent to generate 
maps, allowing us to skip over the need to 
calculate computations based on attributes 
and node type. The basic process for 
converting a Maya shading group into a 
RenderMan shader is as follows.  
 

1. For each surface appearance (i.e 
Blinn, Lambert etc) create a base 
RenderMan equivalent.  

2. For each Maya attribute create the 
equivalent processing function e.g. if 
we want to map the translucency in 
Maya to a ramp, we have an 
equivalent function we takes data 
and processes it in the same way.  



3. Within Maya iterate through the first 
set of children connected to a 
shader, determine the UV 
placement, and then convert the 
node into a texture map. 

4. We then convert the outputted map 
into a RenderMan texture file.  

5. We pass the file names of the 
RenderMan textures to RenderMan 
base shader equivalent. 

6. By determining the placement we 
can imitate Maya’s 2D and 3D 
placement nodes using the shading 
language call texture() or 
environment() 

7. Render the scene via MTOR. 
 

The philosophy behind the system is 
essentially very basic, but it provides a 
efficient conversion method via the use of 
texture calls. 
 
3.2 Advanced Features 
 
The HyperMan system also incorporates 
many advanced features that exploit the 
functionality of RenderMan to provide users 
with full customisation. The system 
incorporates will automate the process of 
generating complex features which are 
unavailable to Maya’s software renderer. It 
also matches the Mental Ray features, such 
as Final Gather. The below table provides a 
comparison between the HyperMan system, 
Maya software, and Mental Ray. 

 
Feature  Maya 

Software 
 Mental Ray HyperMan 

Anti Aliasing Supported Supported Supported 
Raytracing Supported Supported Supported 
Motion Blur Supported Supported Supported 
Multi Processing Supported Supported Supported 
Layers Supported Supported Supported 
Caustics Unsupported Supported Supported 
Global Illumination Unsupported Supported Supported 
Final Gather Unsupported Supported Supported 
Ambient Occlusion Unsupported Supported Supported 
Irradiance Unsupported Supported Supported 
Image Based 
Illumination 

Unsupported Supported Supported 

Custom Layer N/A Unsupported Supported 
Custom shader N/A Unsupported Supported 
Caching Supported Supported Supported 
Animation Caching Unsupported Unsupported Supported 

 
Figure 2 Comparing the systems 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 



 
3.2.1 Custom Layers/Shaders 
 
The HyperMan system allows users to create 
a shader using RenderMan shading language 
and integrates it into the scene.  This 
expands the functionality of the system and 
will allow for new features available in 
RenderMan to be incorporated effortlessly. 
 
Using RenderMan AOV’s (arbitrary output 
variables), we can create a shader and create 
a custom Layer. For example if we want to 
output the surface normal, we create a 
shader in RenderMan shading language.  By 
giving HyperMan the absolute path to the 
compiled shader we, and a selection set 
which holds the objects that the shader is to 
be attached to, we can generate a custom 
pass.  
However the limitations are that the 
HyperMan shaders will not support the 
AOV, i.e. any surface that isn’t attached to 
the custom shader wont generate a new pass.  
 
3.2.2 Animation Caching 
 
RenderMan now supports many-advanced 
ray tracing features, to exploit this we allow 
the use of cache files. Mental Ray also 
supports cache file however although they 
are camera independent the process needs to 
be recalculated if an object moves.  
This is where HyperMan provides an 
improved method for caching. A cache is 
generated for an animation x (user specified) 
amount of times, we then combine these 
cache files into one file and force the  
shader to lookup the cache. This initial 
process can be be slow but then rendering 
the animation is fast as no ray tracing 
calculations are made. 
 
 
 
 
 
 
 
 

 
Fig 3 Occlusion for keyframe 1 
(dragons1.ocf) 

 
Fig 4 Occlusion for keyframe 2 
(dragons2.ocf) 

 
Fig 5 Occlusion for keyframe 3 
(dragons3.ocf) 

 
Fig 6 Combined occlusion data 
(dragonsall.ocf)[17] 

 
 
 
 
 
 
 
 
 

 
[17] Pixar(2004, online) 

 
 
 



4 Results from HyperMan 
 
Below are a few examples of HyperMan’s 
capability in comparison to the Maya 
Software Renderer and Mental Ray. 
 

 
Fig 7 Maya Software Raytrace Production 

 
Fig 8 Mental Ray Final Gather 

 
Fig 9 HyperMan Average Quality 
 
 5 Conclusion & Improvements 
 
The system is far off perfect, and needs to 
more efficient method of extracting data 
from Maya, the obvious solution is to use 
the Maya API that allows iterating through 
the DAG, without having to query 
connections. In this implementation for each 
shader all connections need to be queried, by 
using the API we can use a MFNiterator 
which gives us the ability to move down the 
DAG heirachy without having to perform 
any processing. However we would still 
need to use MEL to convert the nodes into 
texture files.  

MayaMan a system developed by Animal 
Logic will create new shaders on the fly in 
correspondance to the shading network. This 
is a better approach although due to time 
restrictions I was unable to recreate each 
node in shading language.  
 
Pixar are producing a system that integrates 
Maya with RenderMan. HyperMan 
integrates into Maya in seamlessly and from 
a user point of view (in terms of interaction) 
there are hardly any differences between the 
two systems. HyperMan still uses MTOR, 
and this is where HyperMan has added 
functionality, as it uses the Alfred to render, 
which allows us to utilize the network 
rendering capabilities of RenderMan.  
 
The system has limitations, to system is not 
portable to RenderMan compliant renderers 
and so it requires Maya, MTOR (maya to 
renderman plug-in), and RenderMan. The 
solution would be to redevelop the system to 
write shaders on the fly and then parse the 
rib looking for each surface’s identity 
attribute and then replacing the surface 
attribute with our new shader.  
 
Release paper available  
User documentation available  
Technical documentation available 
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