
Approximating the Appearance of Human Skin in Computer Graphics

Ben Jones
March 2006

Abstract
The simulation of realistic lighting and shading for the reproduction of

human skin in computer graphics is a subject of great depth. This

paper deals with a method for implementing an approximation of the

appearance of human skin in a RenderMan shading network, and

using Pixar’s ‘prman’ scan-line native renderer.

Keywords

BRDF, BSSRDF, Subsurface scattering, reflection models, realistic

image synthesis, Fresnel effect.

1. Introduction
The rendering of complex surfaces in computer generated imagery is a

visually driven field, and most of the time the final image is the only

thing which is important. Physical phenomena and physically based

light transport solutions in computer graphics can look stunning;

however, it is extremely computationally intensive. Therefore the

solutions used to shade complex surfaces are only very rarely based

on real-world physics. The majority of computer generated shading

algorithms are based on approximations of these complex real-world

observations, and yet it can be more than adequate to trick the viewer

into accepting the visuals as ‘real’. The rendering of a material such as

skin is complex as it has such a varied and detailed surface, and light

is reflected, refracted, scattered, and absorbed in many complicated

ways.

1.1 Previous work
There has been a significant amount of work that relates to the shading

of computer generated surfaces since it is of critical importance to the

rendering of photorealistic images. The bidirectional reflectance

distribution function (BRDF) was first introduced by Nicodemus [3] as a

simplification of the complex light transport that occurs in real-life as

light interacts with surfaces. This approximation is a basic solution for

the appearance of computer generated materials, however, many of

the subtleties of materials such as marble, skin, and fruit are lost in

such a crude approximation. Such materials, as with most materials in

real life, do not consist of a finite shell, and light is able to pass into and

interact with the inside of a surface. The BRDF approximation in

computer graphics makes the assumption that light is reflected from its

exact point of incidence, and therefore does not account for the fact

that light may exit a surface at a different point and with different

attributes as it is scattered and absorbed within the material. The

images resulting from a simple BRDF approximation are usually harsh

representations of such materials. There has been much research in

this area and much study and development of light reflection models to

incorporate this subsurface scattering. There are many ways of

computing the bidirectional surface scattering reflection distribution

function (BSSRDF) of a material. One method is to compute the full

radiative transfer equations for sub surface transport [4], which can be

extremely slow, and on current computer hardware may be considered

unusable for animated sequences. Dorsey et al. [5] implemented this

method using photon mapping for the realistic rendering of weathered

stone. An approximation of this subsurface scattering was presented

by Jensen [1], where an adequate solution is computed in a fraction of

the time, by using a rapid hierarchical integration technique to evaluate

a diffusion approximation based on the irradiance samples at the

surface of the object. The method described by Jensen [1] for

computing sub surface scattering in translucent materials was

incorporated into a stand-alone program that accompanies version

12.5 of Pixar’s “prman” renderer. Jensen’s method, implemented in this

case, calculates the scattering from a three dimensional map

consisting of points on a surface which contain values of the colour

and intensity of direct illumination (or irradiance) at that point. It

computes new values for these points according to parameters of

scattering and absorption that define that material.

These values for scattering and absorption can only be represented

approximately because many different types of material within the

surface exhibit different properties (skin, for example, would be

influenced by blood, tissue, ligament and bone etc.) therefore the

values used are a recorded average for the material as a whole. The

recording of these reflectance values of various materials has been

studied by many including Debevec [6], but a more robust collection of

coefficients for scattering and absorption have been recorded by

Jensen [2] for various test materials including marble, skin, chicken,

apple and milk among others.

2. Method
The methods used to create the images in this project follow an ideal

that good approximations of complex real-world phenomena can

produce visuals of adequate quality, and are flexible and fast to render

without the use of complex rendering algorithms. The speed of render

is of importance, but not at the sacrifice of image quality, therefore a

balance must be found (depending on the artist’s patience, or

deadline). The shaders used in this project are written using the

RenderMan shading language and the images are rendered in Pixar’s

‘prman 12.5’ renderer. The renderer is used as a scan-line renderer

without ray-tracing or any global illumination, which leaves adequate

time in the render for other important processes such as real depth of

field and motion blur.

2.1 Descriptions of Skin
Skin is a particularly complex material as it has many attributes that

contribute to its appearance. Skin is made up of many layers, all of

which exhibit different scattering and absorption attributes, the

epidermis, which is the top most layer of tissue (save for the thin film of

oil which rest upon it) and is very translucent, allowing a lot of light

through to the relatively thick dermis layer below. This layer contributes

to the colour of the light partially as it passes through small capillaries

where it is tinted by the blood. The dermis is still very translucent and

light is allowed down into the hypodermis. Light is scattered greatly in

the hypodermis layer and collects much of the colour of the blood

vessels that it passes through. All the layers of the skin are translucent

and light may travel a great way through the skin and into the tissue

below, all the while being scattered greatly. There is an overall red tint

to the light that scatters in the lower layers of skin and tissue (as can

be seen if you hold your hand to a strong light), as most of the

colouration of light is attributed to the blood it passes through. The light

transport in skin is also affected by ligaments and bones that are

roughly opaque. Therefore, in computer graphics the synthetic

rendering of any method that is physically correct is extremely

computationally intensive. The use of approximations for this

interaction of light is currently essential, however for such a material it

may not be adequate to use a simple BRDF solution as the sub-

surface scattering element is such an integral attribute of the surface,

and a BSSRDF solution should be used.

To capture the faceted surface appearance of skin on a human hand, a

high resolution three dimensional scan of a hand would be ideal;

however due to the limitation of equipment available during this project

a different approach was needed. A low detailed model of the

geometry was modeled by hand and a displacement map created from

macro photographs of a hand. The photos were taken at 12 million

pixels each, using a relatively inexpensive Fujifilm S7000 digital

camera, and under such lighting conditions as to accentuate the

grooves and patterns on the surface. Then a map of the surface facets

was stitched together by hand in Adobe Photoshop. The drawbacks of

this approach compared to a high resolution scan are only apparent

where the texture seams run along the geometry and a visible seam is

obvious. A package such as Zbrush or any 3D painting package would

allow the seamless integration of the texture and displacement maps

along the seams of the model, and allow for more detail around that

area, but, again due to the limited availability of such packages, and

the time constraints of this project this avenue was not explored, and

remains an option for future work. Colour, and specular maps for the

skin were also painted by hand in Photoshop.

Macro Photograph of a section of skin on Displacement map for the hand.
the back of the hand, many images like this
were stitched together to create the
displacement and specular maps shown.

Specular map for the hand Colour map for the hand

2.2 Diffuse Illumination
The illumination of an object in computer graphics is approximated by

many methods, and usually either by pseudo-light sources or by other

more complex rendering techniques such as Image-based lighting and

global illumination. As speed was a consideration in this project, the

approach chosen to illuminate the scene was a simulation of Image-

based illumination approximated by a dome of virtual lights coupled

with ambient occlusion in the object shaders. The ‘LightGen’ plugin for

HDRShop by Jonathan Cohen was used to obtain the dome of lights

with colours and intensities taken directly from a high dynamic range

light probe image. This approach lowers render time significantly and is

an adequate solution for this project. It also allows the same HDR

image to be put to other uses, such as environment and reflection

maps and still be considered ‘correct’ with respect to the lighting. The

diffuse component of the skin is a simple lambertian approximation, as

used in most computer graphics shading.

2.3 Subsurface Scattering
The ‘ptfilter’ program which accompanies version 12.5 of Pixar’s

‘prman’ renderer, and is based on the methods outlined in Jenson’s

papers [1] and [2], operates on a RenderMan ‘pointcloud’ file. As

Jenson’s sub surface scattering approximation can operate on values

of intensity and color of incident light on the surface of a material, this

information is baked out into a pointcloud file from a separate baking

shader. The ptfilter program is then run on the pointcloud file and filters

it according to Jensen’s subsurface approximation. The parameters of

the ptfilter program are the three coefficients for red, green and blue

scattering: the three coefficients for red, green and blue absorption, the

index of refraction of the surface, and an overall scale parameter.

Jensen [2] recorded the value of the index of refraction for human skin

to be 1.3, and also the skin scattering and absorption coefficients to be

RGB(0.74, 0.88, 1.01) and RGB(0.032, 0.17, 0.48) respectively.

Jensen’s values for skin scattering and absorption coefficients were

recorded from the arm of a Caucasian male, and therefore will serve

as a good approximation for rendering of the hand in this project. Once

the pointcloud information is filtered, it is stored in another pointcloud

file, and then this new file can be read back into the shader as a three

dimensional texture and added to the diffuse component of the shader.

The separation of the sub surface scattering calculation and the final

image rendering means that the final render is much quicker, and the

artist may tweak other parameters of the shader without recalculating

the sub surface scattering component. This method makes the process

a distinct three-stage operation, and therefore a bit more organization

is required to allow the method be handled in a production pipeline.

Using Maya as the base package for producing the RenderMan ‘rib’

files in this project it was useful to write a series of MEL scripts to try

and manage this 3 stage process. [Appendix C].

Irradiance data (left) in the form of a pointcloud file, and the filtered pointcloud (right) using the
‘ptfiler’ program and parameters from Jensen [2] for Caucasian skin. Notice the overall red tint

to the colour of the filtered data, which comes from Jensen’s recorded skin parameters.

2.4 Specular
Skin is covered with a thin film of an oily substance produced by the

Sebaceous gland to lubricate the skin and hairs; this layer and the very

top epidermis are the main contributors to the reflection of the surface,

which is approximated using a slightly modified specular function. The

main addition to the specular component is an approximation of the

Fresnel effect, whereby two specular functions are calculated with

different parameters and mixed together according to the angle

between the vector to the viewer and normal vector of the geometry.

This is a common approximation in computer graphics as it allows

specific alteration of parameters of either the facing specular function

(where faces of the object are roughly perpendicular to the viewer) and

the glancing specular function (for faces that are more orientated to

ninety degrees to the viewer). Therefore the Fresnel effect can be

approximated crudely but with great flexibility. A specular map for the

shader was constructed as an alteration of the displacement map to

accentuate the faceted surface of the skin, and also to distinguish the

parts of the skin with a shinier appearance.

2.5 Hair
Whilst hair is not strictly an attribute of skin, it may be argued that it is

of great importance in the realistic image synthesis of skin, as there

are very few places on the human body that have no hair on the

surface (only the palms of the hands and soles of the feet). Therefore a

very simple hair approximation was included to aid the overall realism

of the image. Indeed the rendering of synthetic hair in computer

graphics demands its own multitude of research papers, and therefore

in this project the hairs are rendered simply with a lambertian diffuse,

phong-like specular, and transparency and translucency coefficient.

The geometry for the hair consists of strips of polygons.

3. Results
Here are a selection of final renders showing various components of

the final image, and comparisons between traditional BRDF and a

BSSRDF solution. The scene consists of a dome of 25 lights (the

brightest of which casts RenderMan ‘deep shadows’), the hand object,

a simple plane base, and an environment sphere textured with the

High Dynamic Range image that was used to generate the lights. The

images are rendered in scan-line mode, at 1280x1024 resolution, with

8x8 pixel samples, a shading rate of 0.25, and real 3D Depth of Field in

Pixar’s ‘prman’ renderer. Images were rendered on an Alienware MJ-

12 workstation with Dual Opteron 244 processors, and would take

roughly 3 to 4 minutes per frame (including all passes).

3.1 Layer Breakdown
Below is a breakdown of the individual layers that make up the shader
on a close-up section of the hand.

Colour pass Diffuse Illumination

Sub Surface Scattering Facing Specular

Glancing Specular Ambient Occlusion

The final composite of the layers above:
Occlusion * (Color * Diffuse + Glancing Specular + Facing Specular) + SS Scattering
It also includes the hairs on the hand, and an environment which is the HDR image used to
generate the data for the lights.

3.2 BRDF and BSSRDF
Below is a comparison of a traditional BRDF solution (the same
components of the shader without the subsurface scattering layer), and
the BSSRDF approximation in the final shader.

A BRDF solution. A BSSRDF solution.
Note how in this implementation a lot of the color for the skin is attributed to the sub surface
scattering and without it the skin lacks its distinctive warm tones and looks quite dead.

3.3 Light Interaction
See attached video file, showing a how each layer interacts with a
rotating environment of lights, and then the build up of the layers into a
final composite, and also an example of the shader without the sub
surface scattering contribution.

Still frame from the video sequence showing the hand in a moving environment.

3.4 Extreme Close-up

Close up of the back of the hand, this is about the closest it is possible to get to the geometry
without any deterioration of the image due to the resolution of the maps used for specular,

displacement and color, unfortunately the texture maps used were only at 4k resolution as the
8k version that was originally used had to be scaled down to improve interactivity in

Photoshop. Note that if a 3D scan were used, the limit would depend on the resolution of that
scan, and it may be possible to get good results far closer.

It is also worth noting that the method of using displacement maps means that the closer you
come to the geometry the slower the render times will be, as this render was roughly 3 times

as long as the ones above.

4. Further Work
Areas of interest and expansion in this area could include the

animation of the subsurface scattering coefficients which are used to

filter the point cloud files. Whilst these coefficients are approximately

constant in real-life, in the field of computer graphics we are not bound

by these constraints and animation of the scattering and absorption

coefficients could result in some intriguing effects.

Another obvious expansion of this project is the animation of the hand,

and realistic simulation of the skin, tissue and ligaments.

One drawback of Jenson’s method [1] is its inability to deal with

opaque materials inside the surface that affect the transport of light

(such as bones etc.). Jensen himself noted the possibility for

expansion to deal with this as a future feature of the algorithm [1].

The three stage approach to the method could be considered

cumbersome for use in a production pipeline, and whilst scripts for

handling this method can automate the process to a certain extent, the

ability to adapt this method of scattering into a single stage operation

would be very useful. However, the flexibility and speed associated

with this method of pre-computing the scattering may be lost in a single

stage solution.

This solution for the shading of human skin (while it could be

considered adequate in some cases) is relatively naive, and due to the

layered nature of skin, a layered shading model would allow for greater

realism and flexibility by simulating the different attributes of each skin

layer separately.

An interesting subject relating to the shading of skin would be the

procedural creation of the facets and grooves in human skin. This is

very complex problem as there is a multitude of different patterns in the

skin, no pattern is the same, and they also merge and flow into one

another seamlessly on the surface. There are general rules as to the

shape, position and pattern of these grooves that depend on the part of

the human body in question, however the patterns vary subtly and

almost infinitely from human to human. If such a procedural solution

was developed it would remove the problems associated with

resolution and seams of three dimensional scans, or hand painted

maps, and allow for rendering at any distance from the surface.

The images in this project are for Caucasian male skin specifically,

however human skin is so varied (even within this group), that factors

of age, sex, and race affect skin properties greatly. Environmental

factors such as heat and humidity will affect colour and texture of skin,

as well as the natural functions of the body such as sweat, movement

of the hairs on the skin’s surface and the effect of pimpling of the skin

in cold conditions. Skin also interacts with other materials in complex

ways, and materials such as dirt, paint, water, oil, change the

appearance and interaction of skin severely. Most of these interactions

could be simulated in the skin shader, and leave this area open to a

seemingly unlimited amount of future development.

5. Conclusion
This method for the fast rendering of realistic human skin is a crude

approximation and fast to render, but may well be adequate in visual

appearance. Using approximations for attributes of the skin such as

the faceted appearance of the surface, scattering of light inside the

tissue, and diffuse and specular reflectance, the resulting image can

be rendered quickly and without advanced rendering algorithms such

as ray-tracing or global illumination.

6. Critique
Having no real previous experience in shader writing, this project was

an interesting challenge, and I feel it has been a valuable learning

experience in being able to understand how surfaces interact with light,

and the ways that we can simulate it in computer graphics. I found the

RenderMan standard for shader writing more useful and intuitive than

a GUI-based system, and found that the explicit operations on values

of the shader made it easier to visualize exactly what the shader was

doing with each pixel, and therefore understand better how variations

in the surface would affect the light.

I feel the results of the project are of a standard that I am pleased with;

although I had originally intended to include another variable element

into the shader, such as water resting on the surface or another similar

attribute. Addition of such an element would be a natural progression

of the current state of the project; however it is only time constraints

that have prevented it.

One section of the project that I am slightly disappointed with is the

approach to recording the maps describing the surface of the hand.

The photography and stitching of photos went well; however, due to

the hardware constraints of today’s machines I could not manipulate

the photographs in their original resolution, and had to scale down the

maps by fifty percent in order to regain the interactivity. This meant that

some detail from the original photos was lost in the final maps.

The greatest problem with using this method of displacing the

geometry came with the seaming of these textures together along the

edges of the virtual model. A hand is a complex piece of geometry for

standard texture projection techniques and I found that in order to

reduce the visibility of these seams it was necessary to reduce the

amount of detail around these areas in the skin texture maps, which in

turn created areas of low detail around these seams, and partially

undermined the aims of the project. Had I had the time and equipment

available, a three dimensional scan, would have been ideal, as it would

have resulted in anatomical accuracy as well as accuracy in the

surface detail. I would have liked to spend more time exploring ways to

merge the seams whilst retaining the necessary detail.

I had ruled out movement of the hand early on in the project,

perceiving the multitude of difficulties in creating realistic movement of

the skin. The fact that anything less than good simulation of its

movement could undermine the realistic appearance of the skin was

apparent to me. However, I should have liked to animate the geometry

to show how the skin shader would adapt as the geometry is

manipulated.

I experimented with a few methods for simulating the effect that the

bones within the hand would have on the transportation of light through

it, but unfortunately none of these experiments provided results of

sufficient standard. I feel it is an important attribute of a hand and

would have liked to explore it more.

Throughout the project I have explored and experimented with the

RenderMan shading standard, and Pixar’s prman renderer, and feel

that I have a good understanding of the systems and their processes. I

would now count it as my rendering and shading method of choice. I

am pleased with the outcome of my shaders, and feel that it would be

easy and flexible to adapt it to simulate many types of skin by simply

creating new textures for surface variation, reflectance and colour.

A significant amount of effort on this project went into the creation of

management scripts for the integration of this method and the base 3D

package of Maya. I am pleased with the results of these automation

scripts, and I will continue to develop them for use in future projects

that incorporate this shading method.

7. References

[1]
Henrik Wann Jensen and Juan Buhler.
A Rapid Hierarchical Rendering Technique for Translucent Materials.
Proceedings of SIGGRAPH 2002.

[2]
JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. 2001.
A practical model for subsurface light transport.
In Proceedings of ACM SIGGRAPH 2001, ACM Press/Addison-Wesley
Publishing Co., New York, Computer Graphics Proceedings.

[3]
F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Geometric considerations and nomenclature for reflectance.
Monograph 161, National Bureau of Standards (US), October 1977.

[4]
S. Chandrasekhar.
Radiative Transfer.
Oxford Univ. Press, 1960.

[5]
J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K. Pedersen.
Modeling and rendering of weathered stone.
In Computer Graphics Proceedings, Annual Conference Series, 1999, August
1999.

[6]
P. Debevec, T. Hawkins, C. Tchou, H. Duiker,W. Sarokin, and M. Sagar.
Acquiring the reflectance field of a human face.
In Computer Graphics Proceedings, Annual Conference Series, 2000, July 2000.

Appendix A: Further Images

Appendix B: RenderMan Shaders

//

//

// SHADER FOR BAKING OUT AN IRRADIENCE POINTCLOUD

//

//

 surface

 bjbakeptc

 (

 //PARAMETERS

 float Ka = 1;

 float Kd = 1;

 string opactex = "";

 string disptex = "";

 string dispspace = "";

 float truedisp = 1.0;

 float scaledisp = 1.0;

 string pointcloudfilename = "";

 string displaychannels = "_area,_radiance_t";

)

 {

 //LOCAL VARIABLES

 color Omap= (1.0, 1.0, 1.0);

 float Dmap= 0.0;

 //READ IN A TEXTURE FOR DISPLACEMENT

 if(disptex !="")

 {

 Dmap= float texture(disptex);

 N = Displace(normalize(N), dispspace, scaledisp*Dmap, truedisp) + (N-Ng)*10;

 }

 //READ IN A TEXTURE FOR TRANSPARENCY

 if(opactex !=""){ Omap= color texture(opactex);}

 normal Nn = normalize(N);

 color irrad, rad_t;

 float a = area(P, "dicing");

 irrad = ambient() + diffuse(Nn);

 rad_t = irrad;

 //BAKE OUT THE IRRADIENCE POINTCLOUD FILE

 bake3d(pointcloudfilename, displaychannels, P, Nn, "interpolate", 1,"_area", a,"_radiance_t", rad_t);

 Ci = rad_t;

 Ci *= Omap;

 Oi = Omap;

 }

//

//

// SHADER FOR RENDERING SKIN

//

//

 surface

 bjskin

 (

 //SHADER PARAMETERS

 float Ka = 0;

 float Kd = 0.45;

 float KsGlance = 1.2;

 float KsFace = 0.6;

 float Groughness = 0.0;

 float Froughness = 0.0;

 string coltex = "";

 string spectex = "";

 string opactex = "";

 string disptex = "";

 string dispspace = "";

 float truedisp = 1.0;

 float scaledisp = 0.06;

 color specularcolor = (1.0, 1.0, 1.0);

 float subsurface = 1.0;

 color subsurfacecolor = (1.0, 1.0, 1.0);

 string pointcloudfilename = "";

 float occlusion = 1.0;

 float occsamples = 64;

 float occmaxdist = 30;

 float occconeangle = PI/2;

 output varying color C=(0.0, 0.0, 0.0);

 output varying color Cdif=(0.0, 0.0, 0.0);

 output varying color Cspec=(1.0, 1.0, 1.0);

 output varying color Cgspec=1.0;

 output varying color Cfspec=1.0;

 output varying color Cocc=1.0;

 output varying color Csss=1.0;

)

 {

 //LOCAL VARIABLES

 color Omap= (1.0, 1.0, 1.0);

 float Dmap= 0.0;

 float facingratio=1.0;

 //READ IN A COLOR MAP

 if(coltex !=""){ C= color texture(coltex);}

 //READ IN A SPECULAR MAP

 if(spectex !=""){ Cspec= color texture(spectex);}

 //READ IN A DISPLACEMENT MAP

 if(disptex !="")

 {

 Dmap= float texture(disptex);

 N = Displace(normalize(N), dispspace, scaledisp*Dmap, truedisp) + (N-Ng)*10;

 }

 //READ IN A TRANSPARENCY MAP

 if(opactex !=""){ Omap= color texture(opactex);}

 normal Nn = normalize(N);

 vector V= -normalize(I);

 //CALCULATE FACING RATIO

 facingratio=Nn.V;

 Cgspec=Cspec*(KsGlance*(1-facingratio));

 Cfspec=Cspec*(KsFace*facingratio);

 //IF SUBSURFACE SCATTERING IS ON

 if(subsurface!=0)

 {

 //READ IN A FILTERED POINTCLOUD FILE

 texture3d(pointcloudfilename, P, N, "_ssdiffusion", Csss);

 Csss*=subsurfacecolor;

 }

 //IF OCCLUSION IS ON

 if(occlusion!=0)

 {

 Cocc = occlusion(P, Nn, occsamples, "maxdist", occmaxdist, "coneangle", occconeangle);

 }

//CALCULATE SHADING COMPONENTS

 Cocc=(1 - Cocc*occlusion);

 Cdif=(Ka*ambient() + Kd*diffuse(Nn));

 Csss*=subsurface;

 Cgspec=(specularcolor*Cgspec*specular(Nn,V,Groughness));

 Cfspec=(specularcolor*Cfspec*specular(Nn,V,Froughness));

 //COMPUTE COLOR

 Ci = (Cocc*((C*Cdif)+Cfspec+Cgspec))+Csss;

 Ci *= Omap;

 Oi = Omap;

 }

//

//

// FUNCTION FOR DISPLACEMENT

//

//

 normal Displace

 (

 vector dir;

 string space;

 float amp;

 float truedisp;

)

{

 extern point P;

 float spacescale=length(vtransform(space, dir));

 vector Ndisp = dir *(amp / spacescale);

 P+=truedisp * Ndisp;

 return normalize(calculatenormal(P+(1-truedisp)*Ndisp));

}

Appendix C: MEL Scripts

//

//

//

// RENDERSCRIPT

// BEN JONES 2006

//

// SCRIPTS FOR THE MANAGEMENT OF RIBS, POINTCLOUDS, AND SHADERS,

// WHEN USING POINTCLOUDS TO SIMULATE SSS

//

// NOTE: THIS SCRIPT WAS WRITTEN TO AID A SPECIFIC PROJECT AND WHILE IT MAY WORK IN CERTAIN CASES

// IT WAS NOT DESIGNED WITH OTHER USERS / USES IN MIND. I HOLD NO RESOPNSIBILITY FOR ANY DAMAGE CAUSED.

// USE AT YOUR OWN RISK.

//

//

//

//

//

// GUI

//

//

proc renderControl()

{

 //GUI

 if (`window -exists renderControl`)

 deleteUI renderControl;

 window -widthHeight 500 300 -title "BenderGlobals" renderControl;

 columnLayout -columnAttach "both" 5 -rowSpacing 7 -columnWidth 250;

 text -label "Name";

 textField name;

 text -label "Start Frame";

 intField startframe;

 text -label "End Frame";

 intField endframe;

 text -label "Bake point clouds for selected objects";

 intField doPointBake;

 text -label "Cleanup bake ribs and Filter PTC";

 intField doFilter;

 text -label "Do Final RibGen";

 intField doFinalRibGen;

 text -label "Render Final Ribs";

 intField render;

 text -label "Farm ON or OFF";

 intField farm;

 button -command "goRenderControl" "GO!";

 showWindow renderControl;

}

//

//

// MAIN

//

//

proc goRenderControl()

{

 // GET VALUES FROM GUI

 string $name = `textField -query -text name`;

 int $startFrame = `intField -query -v startframe`;

 int $endFrame = `intField -query -v endframe`;

 int $doPointBake = `intField -query -v doPointBake`;

 int $doFilter = `intField -query -v doFilter`;

 int $doFinalRibGen = `intField -query -v doFinalRibGen`;

 int $render = `intField -query -v render`;

 int $farm = `intField -query -v farm`;

 //CHECK FOR RIBGEN IF RENDER

 if ($doFinalRibGen == 0)

 {

 if ($render==1)

 {

 error "Cannot render if ribs are not generated.\n";

 }

 }

 //GET MTOR VARIABLES

 string $path = `mtor project get`;

 string $origDspyName = `mtor control getvalue -rg dspyName`;

 // SET PROJECT NAME

 mtor control setvalue -rg dspyName -value $name;

 // IF POINT BAKING IS TURNED ON...

 if ($doPointBake==1)

 {

 // GET CURRENTLY SELECTED OBJECTS

 string $objects[] = `ls -sl -o`;

 // SET APPROPRIATE RENDERMAN GLOBALS

 mtor control setvalue -rg shadingRate -value 5;

 mtor control setvalue -rg pixelSamplesX -value 4;

 mtor control setvalue -rg pixelSamplesY -value 4;

 mtor control setvalue -rg dspyServerMode -value rgb;

 mtor control setvalue -rg dspyServer -value tiff;

 //FIND OUT ORIGINAL VALUE OF DOF AND MOTUION BLUR

 int $dof= `mtor control getvalue -rg doDOF`;

 int $mblur= `mtor control getvalue -rg doMotionBlur`;

 //TURN THEM OFF

 mtor control setvalue -rg doDOF -value 0;

 mtor control setvalue -rg doMotionBlur -value 0;

 //ASSIGN BAKING SHADERS

 assignBakeShader($objects, $path, $name);

 //GENERATE RIB FILES

 generateRibFile($startFrame, $endFrame);

 //RENDER RIB FILES

 renderrib($path, $name, $startFrame, $endFrame, $farm);

 //ASSIGN RENDER SHADERS

 assignRenderShader($objects, $path, $name);

 //RESET VALUES OF DOF ANS MOTION BLUR

 mtor control setvalue -rg doDOF -value $dof;

 mtor control setvalue -rg doMotionBlur -value $mblur;

 }

 // IF POINTCLOUD FILTERING IS TURNED ON...

 if ($doFilter==1)

 {

 //FILTER POINTCLOUDS AND DELETE BAKING IMAGES AND RIBS

 doptcfilter($path, $name, $startFrame, $endFrame, $farm);

 }

 // SET RENDERGLOBALS FOR FINAL RENDERING

 mtor control setvalue -rg shadingRate -value 0.25;

 mtor control setvalue -rg pixelSamplesX -value 8;

 mtor control setvalue -rg pixelSamplesY -value 8;

 mtor control setvalue -rg dspyServer -value tiff;

 mtor control setvalue -rg dspyServerMode -value rgba;

 // IF RIBGEN IS ON...

 if ($doFinalRibGen==1)

 {

 //GENERATE RIBS

 generateRibFile($startFrame, $endFrame);

 }

 // IF RENDER IS ON...

 if ($render==1)

 {

 //RENDER RIBS

 renderrib($path, $name, $startFrame, $endFrame, $farm);

 }

 //RESET PROJECT NAME AND DISPLAY SERVER

 mtor control setvalue -rg dspyName -value $origDspyName;

 mtor control setvalue -rg dspyServer -value it;

 print "COMPLETE!\n";

// system ("mail -s \"RENDERS DONE!\" rhubarb72@hotmail.com");

}

//

//

// ASSIGN BAKING SHADER

//

//

proc assignBakeShader(string $objects[], string $path, string $name)

{

 print ("ASSIGNING BAKE SHADERS...\n");

 //for selected objects

 int $i;

 for($i=0;$i<size($objects);$i++)

 {

 string $shaderName = ($objects[$i]+"_BAKE");

 string $paramname = "pointcloudfilename";

 //list all slim appearances

 string $apparray[];

 string $apps = `slimcmd slim GetAppearances`;

 tokenize($apps,$apparray);

 //for all appearances

 for($j=0;$j<size($apparray);$j++)

 {

 //is the appearance the correct baking shader for the object?

 if ($shaderName == `slimcmd $apparray[$j] GetLabel`)

 {

 //get the slim appearance key

 string $key=`slimcmd $apparray[$j] GetID`;

 //find the parameter that coincides with the point cloud filename

 string $param = `slimcmd $apparray[$j] GetProperties -name pointcloudfilename`;

 //set the parameter

 slimcmd $param SetValue ("{" + $path + "ptc/" +$name+ ".$F4.ptc}");

 //select the object and attach the shader

 select -r $objects[$i];

 mtor control attach surface $key;

 print ("SHADER "+$shaderName+" ASSIGNED TO "+$objects[$i]+"\n");

 }

 }

 }

 print ("FINISHED\n");

}

//

//

// ASSIGN RENDER SHADER

//

//

proc assignRenderShader(string $objects[], string $path, string $name)

{

 print ("ASSIGNING RENDER SHADERS...\n");

 //FOR SELECTED OBJECTS

 int $i;

 for($i=0;$i<size($objects);$i++)

 {

 string $shaderName = ($objects[$i]+"_RENDER");

 string $paramname = "pointcloudfilename";

 //list all slim appearances

 string $apparray[];

 string $apps = `slimcmd slim GetAppearances`;

 tokenize($apps,$apparray);

 //for all appearances

 for($j=0;$j<size($apparray);$j++)

 {

 //is the appearance the correct baking shader for the object?

 if ($shaderName == `slimcmd $apparray[$j] GetLabel`)

 {

 //get the slim appearance key

 string $key=`slimcmd $apparray[$j] GetID`;

 //find the parameter that coincides with the point cloud filename

 string $param = `slimcmd $apparray[$j] GetProperties -name pointcloudfilename`;

 //set the parameter

 slimcmd $param SetValue ("{" + $path + "ptc/" +$name+ ".$F4.ptc}");

 //select the object and attach the shader

 select -r $objects[$i];

 mtor control attach surface $key;

 print ("SHADER "+$shaderName+" ASSIGNED TO "+$objects[$i]+"\n");

 }

 }

 }

 print ("FINISHED\n");

}

//

//

//GENERATE RIB FILE

//

//

proc generateRibFile(int $startFrame, int $endFrame)

{

 int $i;

 int $numFrames=$endFrame-$startFrame;

 print ("\nGENERATING RIBS...\n");

 //FOR EACH FRAME SPECIFIED GENERATE A RIB FILE

 for($i=0;$i<=$numFrames;$i++)

 {

 string $date= `system ("date")`;

 print ("Frame: "+($i+$startFrame)+"\t"+$date);

 mtor control genrib -frame ($i+$startFrame);

 }

 print ("FINISHED\n");

}

//

//

// RENDER RIB

//

//

proc renderrib(string $path, string $name, int $startFrame, int $endFrame, int $farm)

{

 int $i;

 int $numFrames=$endFrame-$startFrame;

 print ("\nRENDERING RIBS...\n");

 if ($farm==0)

 {

 //LOCAL RENDER

 for($i=0;$i<=$numFrames;$i++)

 {

 string $date= `system ("date")`;

 print ("Frame: "+($i+$startFrame)+"\t"+$date);

 string $padded = pad4($i+$startFrame);

 system ("render -p:2 "+$path+"rib/"+$name+"."+$padded+".rib");

 }

 print ("FINISHED\n");

 }

 if ($farm==1)

 {

 //FARM RENDER

 int $j;

 int $numFrames=$endFrame-$startFrame;

 print ("\nSORTING RIBS FOR RENDERFARM...\n");

 string $farmFolder =($path+"rib/"+$name+"_FARM"+$startFrame+"to"+$endFrame);

 system ("mkdir "+$farmFolder);

 for($j=0;$j<=$numFrames;$j++)

 {

 string $padded = pad4($j+$startFrame);

 system ("mv "+$path+"rib/"+$name+"."+$padded+".rib

"+$farmFolder+"/"+$name+"."+$padded+".rib");

 }

 print ("FINISHED\n");

 string $date= `system ("date")`;

// system ("cd;cd "+$farmFolder+";farm;");

 print ("FOLDER... "+$farmFolder+"\tREADY TO SEND TO RENDERFARM\t"+$date);

 }

}

//

//

// POINT CLOUD FILTERING, RIB DELETION, IMAGE DELETION

//

//

proc doptcfilter(string $path, string $name, int $startFrame, int $endFrame, int $farm)

{

 int $i;

 int $numFrames=$endFrame-$startFrame;

 if ($farm==1)

 {

 //DELETE BAKING RIB FILES

 string $farmFolder =($path+"rib/"+$name+"_FARM"+$startFrame+"to"+$endFrame);

 print ("\nDELETING RIBS...\n");

 for($i=0;$i<=$numFrames;$i++)

 {

 string $date= `system ("date")`;

 print ("Frame: "+($i+$startFrame)+"\t"+$date);

 string $padded = pad4($i+$startFrame);

 system ("rm "+$farmFolder+"/"+$name+"."+$padded+".rib");

 }

 print ("FINISHED\n");

 }

 else

 {

 //DELETE BAKING RIB FILES

 print ("\nDELETING RIBS...\n");

 for($i=0;$i<=$numFrames;$i++)

 {

 string $date= `system ("date")`;

 print ("Frame: "+($i+$startFrame)+"\t"+$date);

 string $padded = pad4($i+$startFrame);

 system ("rm "+$path+"rib/"+$name+"."+$padded+".rib");

 }

 print ("FINISHED\n");

 }

 //DELETE BAKING IMAGES

 print ("\nDELETING IMAGES...\n");

 for($i=0;$i<=$numFrames;$i++)

 {

 string $date= `system ("date")`;

 print ("Frame: "+($i+$startFrame)+"\t"+$date);

 string $padded = pad4($i+$startFrame);

 system ("rm "+$path+"rmanpix/"+$name+"."+$padded+".*");

 }

 print ("FINISHED\n");

 //FILTER POINTCLOUD FILES WITH PTFILTER

 print ("\nFILTERING POINTCLOUD FILES...\n");

 for($i=0;$i<=$numFrames;$i++)

 {

 string $date= `system ("date")`;

 print ("Frame: "+($i+$startFrame)+"\t"+$date);

 string $padded = pad4($i+$startFrame);

 system ("ptfilter -ssdiffusion -maxsolidangle 1 -unitlength 0.23 -scattering 0.74 0.88 1.01 -

absorption 0.032 0.17 0.48 -ior 1.3 "+$path+"ptc/"+$name+"."+$padded+".ptc

"+$path+"ptc/"+$name+"."+$padded+".ptc");

 }

 print ("FINISHED\n");

}

//

//

// PADDING

//

//

proc string pad4(int $i)

{

 if ($i >= 1000)

 {

 return (string($i));

 }

 if ($i >= 100)

 {

 return ("0" + string($i));

 }

 if ($i >= 10)

 {

 return ("00" + string($i));

 }

 return ("000" + string($i));

}

