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Abstract 
This paper describes the concept, and previous reali sations, of 
multi -perspective images in nature, art and visuali sation. By 
showing how distortions have been used for visuali sation, it 
motivates the use of multi-perspective images, which are similar 
in effect to object based distortions. A new API being developed 
to facilit ate multi -perspective rendering is presented, with 
particular reference to its suitabilit y for interactive appli cations. 
This API is demonstrated in a simple example of a multi -
perspective image, where five faces of a cube are shown at 
once. Further work necessary to make multi-perspective images 
for visuali sation a realit y is discussed. 

1 Introduction 

We define a multi -perspective image as multiple views of 
a single scene from different perspectives. These views 
are joined seamlessly to form an image that is a coherent 
whole, without discrete subsections. The concept of 
continuously joined views is not new. The idea has been 
reali sed in many different forms; for example, reflections 
on curved objects and lens effects can constitute natural 
multi -perspective views. Apart from the inherent 
aesthetics of the concept, we seek to explore its use as a 
visualisation tool. 

The motivation for exploring multi -perspective rendering 
comes from the limitations of human sight in a 3D world. 
The view we can see from our two eyes can be in many 
situations very limited. We cannot see over tall objects, 
nor through opaque objects, and we cannot see forwards 
and backwards at the same time. In a virtual world, the 
first two limitations can easil y be dismissed – we can fly 
over any object, and turn what we wish transparent. The 
third limitation is what this paper specificall y addresses. 
We seek not just to be able to see forwards and 
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backwards at the same time, but to see from different 
places – without having multiple separate views. 

Real world multi -perspective images are used as 
visualisation aids already. An obvious example is curved 
mirrors on roads, which provide views of both directions 
at T-junctions. We wish to allow for even more flexibilit y 
in virtual worlds, so that visualisers can effectively look 
out from arbitrary curved mirrors. 

2 Previous Work 
Previous work fall s into three sections: work relating to 
viewing from multiple viewpoints continuously, 
techniques for distorting objects, and methods for 
rendering reflections on curved objects. While the 
previous work on multi -perspective images gives a 
clearer understanding on the nature of the images, it is the 
work on distortions that prompts our visualisation focus. 
Previous work on reflections on curved objects relates to 
the practical implementation of multi -perspective 
rendering. 

2.1 Multi-Perspective Images 

In art, Chinese landscape painting, Cubism, and M. C. 
Escher have explored the idea of multi -perspective 
images. Chinese landscape paintings contain different 
focuses, or sub-images, which are seamlessly joined. 
These paintings are similar to the panoramas used for 
cartoon drawing and image resynthesis, as is discussed in 
Chu and Tai (2001). For example, in Figure 1 the 
perspective shifts from left to right, following the path of 
the stream. 

M. C. Escher depicted a view with multiple vanishing 
points, or perspectives, in his work “High and Low” 

Escher (1992). This work, see Figure 2, has five different 
vanishing points: top left and right, centre, and bottom 
left and right.  

While the automatic generation of an image li ke this from 
3D geometry may not be practical, it ill ustrates the 
concept and the aesthetic potential.  

 
 

Figure 1: “ Fisherman’s Evening Song” by Xu Daoning, Circa 11th Century. 



 

Figure 2: " High and Low" by M. C. Escher 

Hand-drawn and computer-generated panoramas with 
multiple points of view have been used as the basis of 
image resynthesis. Cartoon animation from panoramas is 
an early example of resynthesis, which is explained and 
adapted to computer-generated images in Wood, 
Finkelstein, Hughes, Thayer and Salesin (1997). When a 
small subsection of the panorama is viewed it 
approximates a standard single viewpoint. If these 
subsections are taken over a path on the panorama, they 
give the appearance of motion when sequenced into an 
animation. This is because the viewpoint shifts 
continuously in a multi -perspective panorama.  

Rademacher and Bishop (1998) present more generalised 
multi -perspective images as the basis for resynthesis, the 
advantage being a variable level of sampling without 
multiple separate images. The paper call s these Multiple-

Centre-Of-Projection images. One section of the 
panorama can be from close to a portion of the image, 
giving a high sampling for that area, while others are 
further away and capture more of the object. Moving a 
virtual camera through the scene generates the multi -
perspective panorama. At regular intervals the camera 
captures a single line of pixels for the final panorama. 
These lines, either rows or columns, are placed next to 
each other, so that the viewpoint smoothly changes from 
one to the next. This is effectively a virtual strip camera, 
which is explained below. Figure 3 shows a Multiple-
Centre-Of-Projection image of an elephant. The virtual 
camera path goes from one side of the elephant to the 
other, and we can simultaneously see both sides and the 
front. 

Strip cameras are used in surveill ance and mapping. 
These cameras have a continuous roll of film that slides 
past a slit as a picture is being taken. The camera may be 
moved whilst the shooting, providing a change in point of 
view from one section of the film to another. If used from 
a moving plane these cameras can capture a long section 
of curved earth as if it were flat. The cameras have also 
been used for artistic purposes, capturing strange and 
unusual images, such as in Robert Davidhazy’s work 
(Figure 4). 

 

Figure 4: A str ip camera image showing a head from 
all sides taken from Davidhazy (2001) 

In Loffelmann and Groller (1996) the idea of rendering 
from multiple viewpoints with ray tracing is examined. 
By developing an extended camera for ray tracing, the 
authors present multi -perspective images with 
visualisation as an application. Essentiall y an extended 
camera is a set of 3D rays. Each ray has a starting 
position and a direction, and these rays are used by a 
conventional ray-tracer to draw the scene. Unlike a 

Figure 3: Multi-Centre-Of-Projection image of an 
elephant taken from Rademacher and Bishop 

(1998) 



conventional ray-tracer, these rays do not necessaril y 
originate from the same point.  

 

Figure 5: A conventionally rendered set of columns 

 

 

Figure 6: Columns rendered from a torus sur face 

 

Figures 5 and 6, both taken from Loffelmann (2001) 
show the extended camera ray tracing in practice. The 
first image is rendered normally, however the second is 
rendered out of a torus camera. The rays used all start on 
the surface of the torus and point in the direction of the 
surface normal.  

The extended camera is comprised of three sections: an 
object space transformer, a picture space transformer and 
a parameter space transformer. The object space 
transformer is a function that returns the 3D start position 
of a ray given its corresponding index on the 2D screen. 
This function defines a surface in 3D, and the scene is 
rendered “out of” this surface. Defining a multi -
perspective image from a rendering surface is a 
convenient representation, so we have adopted it for our 
work. A multi -perspective image could otherwise be 
defined as a camera path, such as in Rademacher and 
Bishop (1998) described previously. However, the 
camera path can be described as a surface, and vice versa.  

2.2 Distor tions 

Distortions of the data, while being fundamentall y 
different in implementation than rendering multi -
perspective images, highlight the potential and 
applications for multi -perspective images.  Both seek to 
present the data in a changed way so that previously 
unseen properties become apparent. 

Distorting an object to view it better is most commonly 
ill ustrated with the Mercator projection. This takes a 
sphere, generall y the earth, and transforms it to a 2D map. 
In this map directions are conserved, though sizes are not, 
to allow for easy sea navigation. Although the distortion 
of size is an artefact, it allows for a better understanding 
of some aspects of the globe. This is ultimately the point 
of distorting the data, either directly or by rendering 
through a curved surface – to better ill ustrate certain 
properties of the data. 

In Hurdal, Bowers, Stephenson, Sumners, Rehm, Schaper 
and Rottenberg (1999) a scan of a brain was distorted into 
a nearest approximation flat projection. This allows a 
better appreciation of the layout of the brain from medical 
imaging, with the intention of improving surgical 
planning. This type of distortion is highly dependant on 
the nature of the data, and does not translate well to the 
visualisation of arbitrary scenes.  

Distortion Orientated Displays are a general visualisation 
tool based around the distortion of data. These displays 
seek to show detail and context simultaneously. The 
general problem is that when detail is shown, much of the 
screen is fill ed with that detail . If the surrounding data is 
shown at the same level of detail , it would not fit on the 
screen. To accommodate this, in a distortion view there is 
a region of focus at a certain detail level, which smoothly 
transitions to a region of context at a lower detail l evel. 
This can be seen in Smith (1997). Using a distortion 
called a frustum display, the author was able to achieve 
levels of detail suff icient for a city level road map, whilst 
showing the context of the whole of Australia.  

In 3D, both Keahey (1998) and Winch, Calder and Smith 
(2000) expanded the idea of distortion orientated displays 
to allow for regions of zoom – regions where the scene 
data was expanded to a larger size. These prove useful for 
highlighting sections of particular detail i n a scene 
without zooming and therefore cutting out periphery data. 

The idea of detail and context is to have at least two 
different perspectives on the data. In this case the 
perspectives are not literal changes in viewpoint, but in 
operating conditions. In Vallance and Calder (2001) the 
idea of distorting a mainly planar world onto the inside of 
cylinder was examined. This was proposed, in the 
application of virtual maze navigation, so that two 
different perspectives on the maze could be 
simultaneously reali sed: a local view of the undistorted 
maze walls, and a navigational view of the distant maze 
perpendicular to the users viewpoint. Figure 7 shows an 
example of the maze distortion. 



 

Figure 7: A maze distor ted in a cylindr ical fashion to 
show context 

The cylindrical distortion works only because the data 
lies mainly on a single plane. For arbitrary 3D data it is 
unclear how the mapping onto a cylinder would be 
helpful.  

2.3 Reflections on Curved Objects 

Reflections on curved surfaces are a natural form of 
multi -perspective image. Computer graphics has long 
been interested in reali sticall y rendering virtual scenes 
including reflections. Research into generating reflections 
on curved objects, especiall y for real-time graphics, 
shows how multi -perspective rendering can be 
implemented. However reflections on curved objects are 
a subset of multi -perspective images. Moreover they need 
not be entirely accurate (they need only look appropriate) 
and form only a small portion of the screen. Multi -
perspective images for visualisation have different 
accuracy requirements and take up more of the screen. 

Ray tracing is the most direct way to render reflections 
from curved surfaces. When a ray intersects a reflective 
surface it bounces off in a direction determined by the 
angle of intersection with surface. Reflections drawn in 
this manner are accurate, however ray tracing tends to be 
very slow. Various methods exist for accelerating the ray 
tracing. These methods range from reducing the number 
of ray-surface intersection tests with hierarchal space 
subdivision, to paralleli sing the calculations. Without 
massively parallel hardware it seems unlikely real-time 
ray tracing will be achieved soon, the problem is 
discussed in Jansen (1993). 

Environment mapping was initiall y suggested by Blinn 
Blinn and Newell (1976), and is often used to 
approximate curved reflections for real-time graphics. 
When a scene is rendered from a particular viewpoint, the 
light coming into that point is sampled. With enough 
samples for a particular viewpoint, the technique can 
approximate the colour of any ray shot from that point. A 
popular implementation of environment mapping 
involves rendering to the six faces of a cube centred on a 
point. When used for generating reflections, this centre 
point is the centre of the reflective object. For each ray 
that bounces off the reflective object, a ray is shot from 

the centre point in the direction of the reflected ray into 
the cube. This approximation moves each reflected ray to 
the centre of the cube. For scenes where the reflected 
objects are far away from the reflective object the 
technique works well; otherwise the approximation is 
obvious. For the purposes of multi -perspective images 
environment maps are not suff iciently accurate. The light 
is sampled at only one point, making it unsuited for 
multi -perspective, or multi -viewpoint, rendering. 

An extension to the concept of environment mapping is 
proposed by Cho (2000) to provide more accurate 
images. Instead of simply sampling the light coming into 
a point, a depth-mapped image is calculated for each of 
the six cube faces of the environment map. Reflection 
rays can then be traced into the 3D depth map, without 
needed to approximate the start point of the ray. This 
technique amounts to ray tracing the scene, though 
through a modified representation of the geometry (the 
depth map) that provides a significant performance 
enhancement in some cases. Static scenes are required for 
this technique, as otherwise the depth maps need to be 
recomputed at each frame, which is very expensive. In a 
multi -perspective image for visualisation, the surface will 
be moving and not static in relation to the scene, so 
extended environment maps would be unsuited. 

Another type of technique based on environment 
mapping is presented in Hakura, Snyder and Lengyel 
(2001). In this technique, layers of environment maps are 
used. Different environment maps may be used according 
to the viewer’s location and direction of view, to avoid 
the faili ngs of standard environment maps. Once again, 
this technique requires a static scene relative to the 
reflective object to be effective. Rendering these 
reflections from a series of stored images is actuall y 
image based rendering. Other image based rendering 
techniques, such as the Lumigraph (Gortler, Grzesczuk, 
Szeliski and Cohen 1996) can be useful for rendering 
reflections. These techniques represent the light in the 
space of a scene, and are sampled with 2D sli ces to 
generate a particular view. The drawback of such a 
system is that it is currently not used for many 
visualisation purposes, has a large memory overhead, and 
needs an unchanging scene.  

The most intriguing approximation of rendering 
reflections on curved surfaces is described in Ofek and 
Rappoport (1998). In this method, objects are 
transformed by the reflective surface so that they may be 
rendering from a single viewpoint. In essence the data is 
distorted to an approximation of how it will l ook after 
being viewed from a reflective surface, and then 
rendered. It requires an appropriate tessellation of both 
reflective surface and scene object so that lines that 
should now appear curved do. The performance of this 
technique is suff icient for real -time rendering of moderate 
scenes. The technique works on standard polygon scenes 
making it suited for visualisation tasks, and easy 
integration into current applications. 



3 An API for Mult i-Perspective Rendering 

In developing an API to facilit ate rendering from multiple 
perspectives the key concerns were: 

• To separate, as much as possible, technique from 
calli ng interface. 

• To allow easy integration into existing visualisation 
applications. 

• To allow for expansion of functionalit y and 
techniques. 

 
To achieve interactive rendering of multi -perspective 
images a variety of different techniques will need to be 
evaluated. The API is designed to flexible enough so that 
different techniques can be used without major changes to 
the visualisation code that uses the API.  
One of the most popular API’ s for 3D graphics is Sili con 
Graphics Inc.’s OpenGL. It provides a clear and powerful 
set of instructions for building graphical programs. The 
specification is described in Segal and Akeley (1998). 
This API forms the inspiration for our design, and many 
of the commands resemble OpenGL syntax. By basing 
the API on OpenGL it should allow for easy integration 
into existing visualisation programs that use OpenGL.  

The multi -perspective rendering API covers two main 
tasks: describing a surface to render from and a scene to 
be rendered. Two abstract classes define the base level 
interfaces provided by the API for these two tasks. 

 

Geometry: Describes the scene to be rendered. 

Functions Description 

Begin() Start of a geometry 
description block. Vertex, 
normal and colour may 
only occur between a 
Begin() and an End() 

End() End of a geometry block 

Vertex3f(float x, y, z) Place a vertex of a triangle 
in the scene with the 
current normal and colour 

Normal3f(float x, y, z) Specify the current normal 

Color3f(float a, r, g, b) Specify the current color 

Other Various other commands to 
specify textures and other 
graphical properties 

 

Sur face: Describes the surface to render from. 

Functions Description 

BeginSurface() Start specifying a surface, 
vertex and normal 
commands may only 
appear between a 
Beginsurface and 
Endsurface 

EndSurface() End a surface specification 
block 

Vertex(float x, y, z) A vertex in the surface, the 
exact meaning is dependant 
on the type of rendering 
technique 

Normal(float x, y, z) Current normal for each 
vertex 

Viewport(float l, r, t, p) The viewing dimensions of 
the screen. Determines how 
the surface is mapped to 
the screen 

 

These classes are accessed through the Renderer class, 
which is a conglomeration of all the interface functions so 
that they may be accessed without reference to particular 
Geometry or Surface objects. The rendering technique 
implemented in the Renderer class, which uses specific 
Geometry and Surface objects to generate an image. This 
is done so that the interface looks and feels more li ke 
OpenGL. 

These abstract classes are inherited by specific 
implementations. For instance, the rendering of multi -
perspective images can be done with a ray tracer, the 
surface can be specified as a set of rays and the geometry 
as a set of triangles. This defines three classes that inherit 
from the base classes: RayTraceRenderer, RaySet and 
TriStore. Figure 8 shows the relationships of the classes. 
The solid arrows indicate inheritance and the dashed 
arrows show usage. 

 

Geometry

Surface

Renderer

TriStore

RaySet

RayTraceRenderer

 

Figure 8: Diagram of base classes and a raytracing 
renderer 

 

In the surface class, li ke the geometry class, the main 
mechanism for passing information to the lower level 
rendering technique is the vertex and normal commands. 
This symmetry is deliberate, so that, with the right 
technique, a surface can be used to render from or to draw 
with littl e modification. Also this OpenGL-style 
immediate-mode specification of surfaces suits an 
interactive application where the surface may be 
changing from frame to frame. 

The types of rendering surfaces that can be represented 
easil y with only vertex and normal commands is similar 



to the types of conventional surfaces easil y specified with 
those primiti ves. Simple point-based geometry is 
analogous to a simple rayset surface, where vertex and 
normal commands denote a ray’s origin and direction.  

Triangular patches are probably the most common form 
of 3D geometry and rendering surfaces can also be 
described in this manner. While polygon patches are not 
curved, it is common practice to make them appear so by 
interpolating properties between the vertices of the 
constituent triangles. By taking the normal values at a 
particular point as denoting the direction of a ray origin at 
that point, and interpolating these normals between the 
vertices, a graduated or curved surface is approximated. 

 Parametric surfaces are also easil y specified with vertex 
and normal commands, with vertices interpreted as 
control points of a patch. It is hoped that these different 
ways of specifying surfaces will be suff iciently rich for 
most purposes. 

To ill ustrate how the API works here is an example based 
on using the RayTraceRenderer described in Figure 8: 

 

RayTraceRenderer rtr; 

 

void SpecifySurface() { 

  rtr.Viewport(0,0,1,1); 

  rtr.BeginSurface(); { 

    rtr.Normal3f(0.0,0.0,-1.0); 

    rtr.Vertex3f(0.0,0.0,0.0); 

    rtr.Normal3f(0.0,0.0,1.0); 

    rtr.Vertex3f(0.0,0.0,-1.0); 

  } rtr.EndSurface(); 

} 

 

void SpecifyScene() { 

  rtr.Begin(); { 

    rtr.Normal3f(0.0,0.0,1.0); 

    rtr.Vertex3f(1.0,0.0,-1.0); 

    rtr.Vertex3f(-1.0,0.0,-1.0); 

    rtr.Vertex3f(0.0,1.0,-1.0); 

  } rtr.End(); 

} 

 

These functions, appropriate called, trace two rays into a 
scene comprising of a single triangle.  The RaySet and 
TriStore objects are hidden by the RayTraceRenderer and 
are accessed through that class. 

4 Raytracing Implementation 

As a first case implementation a ray tracing algorithm 
was used, with rendering surfaces defined as a set of rays. 
This implementation was used to render a simple scene 
with a cube a tiled floor, shown here in Figure 9. While 
basic, the scene has some properties that make it an 
appropriate demonstration of multi-perspective rendering. 
First the cube has six numbered sides, in a normal 
perspective view at most three sides can be seen at once, 
due to self occlusion. Second, the tiled floor provides a 
reference to the effect of the rendering surface that is 
easil y perceived.  

 

Figure 9: The cube scene 

 

To simultaneously show five sides of the cube, a curved 
surface is placed over the scene. This surface is 
constructed initiall y from 16 control point Bezier patch, 
which is decomposed in a set of rays. The surface can be 
seen here in Figure 10, and is roughly hemispherical in 
nature. Figure 11 shows the cube scene rendered through 
the surface, with five of the cube’s faces visible.  

 

Figure 10: A sur face for visualising all sides of a cube 

 

The surface spans the cube scene, with the rays pointing 
inwards in a direction normal to the surface. The 
generation of the rays from the Bezier equations and 
control points is a significant performance cost in itself.  



 

Figure 11: The cube scene rendered from the surf ace 
in Figure 10 

 

The surface was constructed by manually entering 
appropriate values for the Bezier control points. This is 
undesirable from an interaction point of view, one of the 
key aims of our research. As a first experiment in the 
interactive specification of rendering surfaces, a 1-
dimensional control is proposed. A slider dictates the 
amount of perspective on a normal rendering surface. A 
zero value corresponds to an orthographic projection, and 
the positi ve values correspond to an increasingly severe 
perspective projection.  Negative values correspond to a 
‘ reverse’ perspective projection where distant objects 
seem larger, and closer objects smaller. Figures 12 
through 14 show a perspective view, an orthographic 
view and finall y a ‘ reverse’ perspective, respectively.  

Figure 12: A perspective projection 

 

Figure 13: An or thographic projection 

Figure 14: A ‘ reverse’ perspective projection 

 

The floor of the cube scene appears to be upside down in 
Figure 14, as the distant top edge is now larger than the 
closer bottom edge. A simple 1-dimensional slider barely 
captures the possibiliti es of interactively controlli ng the 
rendering surface, but does allow for an evaluation of 
such things as API design and system performance. The 
OpenGL li ke multi -perspective rendering API is well 
suited to interactively specified rendering surfaces 
because the surface is specified in a manner similar to 
that of dynamic geometry.  

The rendering performance of the ray tracing 
implementation of the API is too slow for interactive 
performance. Frames take seconds to render each, even 
over such a simple scene.  The ray tracing 
implementation is admittedly naïve, and does not include 
such common speedups as BSP culli ng of scene 
geometry. The API is designed to easil y allow for the 
development and integration of new techniques, and these 
are already being worked on. 



5 Conclusions and Further Work 

While the performance of the API in terms of frames per 
second is far from interactive, the design and conceptual 
groundwork has been laid for more detailed investigation 
into multi -perspective images from visualisation. By 
extending previous work on interactive reflections on 
curved objects to multi -perspective images for 
visualisation performance issues will be addressed. The 
raytracing implementation described in this paper forms 
an important base line for measuring the accuracy of 
faster implementations. 

The interactive manipulation of viewing surfaces is an 
unexplored field, the simple 1-dimensional interaction 
described here is a start, though things will be much more 
complicated with more dimensions of freedom. Another 
aspect this paper does not touch on is in the useful 
application of multi -perspective images. The cube world 
in Figure 11 demonstrates clearly one of our reasons for 
pursuing multi -perspective images, the abilit y to see more 
than is otherwise possible. With appropriate tools and 
interfaces we believe multi -perspective images will be a 
valuable tool for visualising complex data. 
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