

Abstract

In this project I have explored some ideas relating to interface design and inter-
action. The study begins with some general thoughts concerning game design
and videogames, and progresses into a discussion of interactivity and the concept
of “ludic design”. These ideas are then used to inform the design and devel-
opment of a small game program, created in C++ using OpenGL and SDL.
With this program I intended to implement the design principles discussed, and
succeed in engaging users through use of interface and interactivity.

Contents

1 Introduction 2
1.1 Preliminary Research . 2

2 Aim 3

3 Design 4
3.1 Interface . 4
3.2 Visuals . 5
3.3 Final Design . 7

4 Implementation 11
4.1 Collision Detection . 11
4.2 Stage Design . 14
4.3 Graphics . 15

5 Analysis 20
5.1 Successes . 20
5.2 Shortcomings . 21

6 Conclusion 22

7 Bibliography 23
7.1 Game and Interface Design . 23
7.2 Programming Resources . 23

1

1 Introduction

Videogames are a complicated medium to study, as they encompass a broad
range of disparate design disciplines. A typical videogame might involve art
design, audio design, narrative, scriptwriting, gameplay and UI design, in addi-
tion to programming and software engineering. As someone with a keen interest
in the medium, I have often wondered if there is some key element responsible
for making a videogame a compelling experience. Discussing it with friends
produces mixed opinions; some may cite the storyline and scenario, others the
gameplay objectives and rules as the elements most fundamental to a game’s
appeal. However, certain games are likely to elicit a response along the lines of,
“It’s just fun to play”.

This ‘just fun to play’ is the aspect of videogames which I find most inter-
esting. Of all the components mentioned above, it seems that this might be
the only attribute of videogames which is fully unique to the medium. With
this project I intend to investigate this area; what is this fun element, and
can I recreate it in a game of my own? Is it distinct from the aforementioned
components which make up a game, or is it a consequence of them all?

I suspected that this fundamentally “fun” element was to be found at the
simplest level of interaction between the player and the game. For this reason,
I began my research by looking into the areas of interface design, and human-
computer interaction.

1.1 Preliminary Research

In his essay Designing for Homo Ludens[2], Bill Gaver defines “ludic design” as
the idea of design for the purpose of play. This runs in opposition to the idea of
design for utility; in the latter, the designer aims to overcome a practical prob-
lem, and consequently enable users to achieve a specific task. Speed, efficiency
and ease of use are the common goals of utilitarian design. In contrast, ludic
design champions ambiguity, surprise, and goalless interaction. Gaver argues
that such type of design is not a worthless pursuit:

“We [humans] are characterised not just by our thinking or achieve-
ments, but by our playfulness: our curiosity, our love of diversion,
our explorations, inventions and wonder. (...) Play is not just mind-
less entertainment, but an essential way of engaging with and learn-
ing about our world and ourselves - for adults as well as children.”

In the realm of computer software, this idea of ludic design is not isolated
to videogames. As hardware has become more sophisticated and processing
power has become an increasingly disposable resource, these ideas have infil-
trated many areas of software and interface design. Apple is an example of a
company who has leveraged this type of design to great success. Since 2000
their operating systems have incorporated many interactive elements which are
subtly playful in nature: windows appear to slurp in and out of the taskbar;
icons balloon in response to an approaching cursor; the entire screen is pulled

2

smoothly into darkness upon entry of a media player. These cosmetic changes
all work to imply that the screen is a physical 3D space, strengthening the
metaphor with real-world interaction and making the OS feel more intuitive.
However, these cosmetic additions also mean that the computer is no longer en-
gaging users on a purely functional level; it has introduced elements of surprise,
exploration and ludic appeal.

Figure 1: Ludic design ideas in evidence in operating systems and web design.

Modern website design has also been informed by these ideas. A simple
example can be seen at the website of animation company Bitt Animation[1];
rather than remaining static, the buttons on this page appear to respond to the
mouse in a tactile manner, providing a brief thrill to visitors exploring the site.

I identified this type of design as the source of the fundamentally “fun”
element which seems to exist in some videogames. The question which followed
is: can this element be isolated? Would it be possible to strip out all other
aspects of a videogame, such as gameplay objectives, context and storyline, and
create a compelling experience through use of ludic design ideas alone?

2 Aim

The aim is to make a simple program which uses ludic design principles to
engage the user. The software must be designed so as to invite curiosity and
playful interaction from users; if successful, the program should compel users to
uncover all of the mechanisms of the game, without resorting to other avenues
of involvement such as narrative, objectives or stated instructions. Methods for
prompting this behaviour from users will form the main focus of research.

In the process of creating the game, I also intend to develop my own under-
standing of game design and software development.

3

3 Design

3.1 Interface

My research lead me to believe that tactile feedback is the key to engaging
users on the interaction level. As such, the idea of ‘tactility’ became the guiding
principle of my design.

I chose a side-on perspective, allowing for a 2D representation of objects
which could respond predictably to gravity and collisions. Physically-based be-
haviour seems to be appealing in an interactive context; it implies a tangible
space, which users can relate to instantly. In addition to this, it lends a consis-
tency and uniformity to object movement which users are able to predict and
anticipate.

Figure 2: Despite its semi-abstract visual style, Sony Computer Entertainment’s
Locoroco manages to create an instantly convincing and tangible gameworld
through its use of realistic physics.

The goal of my interface design was that users should be able to master it
intuitively without instructions. As such, it was necessary that no part of the
control scheme was mapped to the keyboard; any function hidden on a specific
key would necessitate the need for a manual. Players needed to be able to control
the game intuitively via the mouse alone. Consequently, my goal was to design
a single-button control scheme which would depend only on the movement of
the mouse and the left-click button.

I drafted several ideas for control schemes which could achieve this.
My first idea on this issue was very straightforward. I envisaged a straight-

forward click-and-drag scheme, in which the user can move the player entity by
pushing the mouse toward the edge of the screen. The further the mouse would
move from the center of the screen, the greater the acceleration of the player
entity. Other actions could be achieved by swiping the mouse across the player
entity in a specific direction; for example, a jump could be performed with an
upward swipe.

4

Figure 3: First idea for a mouse-driven control scheme: ‘walking’.

Figure 4: First idea for a mouse-driven control scheme: ‘jumping’.

I was aware that this control scheme might not be so successful in practice,
so I noted several variations on the scheme which would need to be tested during
development. One of the more distinct ideas was a rotational control system;
players would be able to build up velocity either left or right, by rotating the
mouse around the center of the screen either clockwise or anticlockwise. This
scheme was likely to feel fairly tactile; the winding motion of the mouse would
resemble the real-world activity of winding up a spring or an engine. In addition,
the gradual acceleration of the player object would create the illusion that energy
is being transfered from the player’s hand to the on-screen object.

These ideas could not be approved until the project reached a stage where
they could be tested.

3.2 Visuals

Attractive imagery is always helpful when engaging an audience. However,
creating statically “pretty” images was not my aim with this project. A good-

5

Figure 5: Developed control idea: rotational mouse movements build velocity
on the player object.

looking piece of software would not necessarily be more successful at engaging
users on an interactive level than a crudely-drawn one: in my own experience, I
have seen players quickly lose interest in attractive retail videogames, quitting
even before the interactive components of the game have been introduced. These
games were relying on visual and narrative appeal alone to sustain interest
during their opening stages; and in doing so, were arguably failing to leverage the
unique potential of the medium in order to engage users through interactivity.

Due to this idea and constraints of time and ability, I chose not to aim for
showstopping visual appeal. Instead, I decided to approach the visual design
with the aim of emphasizing the ludic appeal of the game. It was my belief that
graphical effects have the most impact on the user when they are tied closely to
his or her actions; and as a result, I decided that every on-screen event should
occur in response to user input. This would be applied consistently, such that
every visual element should be tailored to highlight the interactions between the
user and the program. I would try to avoid including any static screen elements
which would not respond in some way to user input.

Following on from this, the idea occurred to me that every element visible
on the screen should be present as a direct consequence of the player’s actions.
This would create the strongest connection between the user and the on-screen
imagery. It followed that the game’s opening screen should include the bare
minimum number of elements; starting as a blank canvas, the game space would
populate with imagery as a result of the user’s continued interaction.

This idea also lead to solution of another problem. Typically, a retail
videogame will bombard users with new information: a HUD, on-screen prompts
and/or a full tutorial are all expected within the first 15 minutes of the game.
For many users, particularly those who are unfamiliar with the grammar of
videogames, this process might seem to run counter to the concept of ‘play’;
rather than play, this appears to be heavily structured work. Dedicated audi-
ences will not be phased by this; but those who are less involved might find it

6

Figure 6: Concept art for the design of the game’s opening screen.

off-putting, to the point that they give up on the game altogether. By intro-
ducing screen elements one at a time, I hoped to avoid the information overload
which could otherwise turns users away.

When deciding how entities within the game should appear, there were sev-
eral problems to consider. If I was to apply a recognizable context or theme to
the game, the element of user-lead interaction would have been partially lost:
familiar imagery would immediately bring with it associations of real-world in-
teraction, narrowing the range of approaches taken by users in their attempts
to operate the game. In order to avoid ‘context clues’ influencing user attempts
at interaction, I decided that all visual elements in the game should be abstract
and geometric. This style would also allow me to test the ludic design princi-
ple of ‘projection’ - the idea that ambiguity can be intentionally woven into an
artifact’s design, with the purpose of eliciting “richer responses and inspiration
from users”[3].

3.3 Final Design

The final design is a 2D platformer-style game with an abstract graphical style.
Emphasis is placed on creating immediate and tactile responses to player ac-
tions; every element on-screen is to respond visually and/or aurally to a mouse
click. These responses may be small or inconsequential, but they should in-
trigue users and encourage further experimentation. The interface consists of
the single-button control scheme described in the preceding section. The graph-
ical style is abstract, with in-game entities represented by geometric shapes.

7

8

9

10

4 Implementation

The game was created in C++ using OpenGL and SDL. A fairly simple object-
oriented structure was used, although the development of this structure took
some time due to my relative unfamiliarity with object-oriented programming
practices. The final program structure incorporated three main components.
Firstly, a ‘Scene’ class was used to contain and manage all of the non-graphical
data about the game’s current state. Every game entity with a position or
screen presence was to be created and destroyed within the Scene object. With
each iteration of the game loop, the main function would call the Scene object’s
‘Update’ member function; this in turn would update every entity in the scene.

A ‘Draw Engine’ class was created on the same level; this allowed all of the
OpenGL function calls to be contained within a single object. The Draw Engine
object would access the contents of the Scene object by reference, and use the
data stored there to build a 3D environment and draw it to the screen. Finally,
an ‘Input Handler’ class was created, containing all of the SDL calls needed to
interpret user input. Like the Draw Engine, the Input Handler object would
access the Scene object by reference, and directly edit the contents of the scene
in response to player activity.

4.1 Collision Detection

Due to the limited time available to construct a working engine, I decided to
limit collision detection to bounding-box collisions.

Figure 7: Early bounding-box collision tests with basic physics applied.

I developed a basic hierarchical system for handling scene collisions. With
each iteration of the gameloop, the main function would call Scene::updateScene().
This function would iterate through every dynamic entity in the scene, and pass
each entity by reference to the template function Scene::performCollisions().
This function would perform all relevant collision checks on the entity. If an

11

Figure 8: Early test: entities of non-uniform scale, behaving with class-specific
responses to collisions.

intersection between two entities is detected, the member function ‘collisionRe-
sponse()’ is called for both entities, with the intersection vector passed to the
entities as an argument. The entities would then be responsible for altering
their position, velocity or colour in response to the collision.

The advantage of this system was that each derivative of the parent ‘Entity’
class could respond uniquely to collision events detected within Scene::performCollisions();
simply overwriting the ‘collideResponse()’ function of the class would provide
a unique collision behaviour for that type of entity. This meant that boxes
could be made difficult to push, falling heavily and landing without any bounce;
whereas sparks could spring energetically away from collisions, with added ran-
dom values influencing their velocity.

The collision detection I implemented was functional, but very poorly opti-
mized. On every frame, each dynamic collision entity would be checked for col-
lisions against every other dynamic collision entity; this meant that the number
of checks performed would increase exponentially as more objects were added
to the scene. In an attempt to optimize this, I implemented some simple broad-
phase collision detection. This was a basic tile grid system[8], in which the
address of each static tile entity was added to a 2D array during the construc-
tion of the scene. The array element selected for each tile was determined by
the x,y coordinates of the block in scene-space. This allowed any entity to
dereference the grid array using its own scenespace coordinates; thus accessing
whichever tile entities exists in the nearby area. The result is that only four
collision queries were needed when colliding a dynamic object against an entire
scene of static tiles.

12

Figure 9: Simplified UML diagram of basic program structure

13

4.2 Stage Design

Figure 10: The system used to create the impression of an infinite play space.
Depending on which A, B, C, D quadrant is currently occupied by the player,
the playing area is drawn three additional times along the edges of the stage.

One of the important aspects of the design was that the player should be fo-
cusing on their immediate interactions with the game. I did not want to present
the player with any potentially tedious routefinding or navigational tasks. With
this in mind, the game’s space had to be designed in such a way that there was
no ‘wrong’ way to go; players should never be lost, trapped or forced to look for
an exit. In effect, there should be no dead-ends.

In order to achieve this, a system had to be developed whereby the small,
finite game space could be seamlessly ‘wrapped’ from left to right and top to
bottom, creating the illusion of infinite space. This would permit players to
run or fly infinitely in any direction, while keeping the amount of data involved
compact and manageable.

I implemented this in two stages. The first stage simply required entities
which passed beyond the boundaries of the stage to be moved to the opposite
side of the stage, while keeping their velocity intact. This was straightforward to
implement, but of course appeared disorienting when the player object crossed
the boundary. The second stage was to change the behaviour of the Draw
Engine class, such that it would draw the entire contents of the scene more
than once each frame; first, it would draw the scene in the correct worldspace
position; next, it would draw the scene again in a full transpose to the side of
the original draw. This created the illusion that there was no scene boundary;
when approach the edge of the scene, the other side of the scene would come
into view as though it was a single continuous space.

The effect of this was successful when moving objects across the scene bound-
ary. However, it introduced a series of problems relating to collision detection.

14

Figure 11: The player object approaches the boundary of the stage. Here the
stage boundary is drawn as a white line, and transposed sprites are dimmed.

Entities at opposite ends of the stage would appear to be positioned alongside
each other; but when they appeared to touch, they passed through each other
without detecting collisions. Obviously this was because the entities were not
actually alongside each other, but at opposite ends of the stage. This required
an upgrade of my collision detection function; in order to correctly detect col-
lisions, it was necessary to temporarily transposes entities away from the scene
boundary during the detection phase.

4.3 Graphics

I intended the keep the game’s visuals as close as possible to the style developed
in the planning stage. This would require the implementation of glow effects
and trails.

I investigated some procedural methods for implementing a full-screen ‘bloom’
filter. However, it became apparent that it would be more economical both in
terms of game performance and project time to emulate the bloom effect using
sprites. I decided to implement ‘bloom’ as an attribute local to each screen
entity; when an entity is drawn to the screen, its bloom sprite is drawn on top
of its primary sprite, create an aura-like effect. This was a beneficial approach,
as it allowed the glowing appearance of each screen element to be tweaked indi-
vidually on a per-object basis. The colour and brightness of an entity’s bloom
sprite would be determined by colour values saved within the entity; this al-
lowed the glow of an entity to be changed in direct response to a collision or a
mouse click.

In practice, I found that the effect was unsatisfactory. Transparent sprites
layered on top of each other did not appear to give the impression of a ‘glow’ or
bloom. However, I found that by changing the OpenGL blending mode I could

15

Figure 12: Left: two sprites combined with regular blending. Right: two sprites
combined with additive blending.

achieve the desired effect: the function call

glBlendFunc(GL_SRC_ALPHA,GL_DST_ALPHA)

created the additive effect I wanted.
The next visual component to implement was glowing trails which would be

left behind by moving entities. I found the most practical way to do this was to
create an simple Entity-derived class, which would be used to represent a ’bloom
entity’. This would be a non-colliding type of entity which would appear only
as a faint bloom on the screen. The lifespan of a bloom entity would be short;
its opacity would decrease with each passing frame until it would no longer
display, whereupon it would be deleted from the scene. A function was created
which would emit a trail of bloom entities in the wake of a moving object. The
moving object’s colour values would also be copied to each new bloom entity
as they were created. This appeared to have the desired effect; however, the
routine created a performance hit when applied to every object in the scene.
Ultimately I applied the trail effect only to the player object.

One significant problem I had with the visuals was the use of perspective
projection. Although all game elements were to be drawn on a 2D plane, it
was my intention to draw other decorative elements closer or further from the
camera in order to create a sense of depth. The problem I encountered was
a consequence of the wraparound stage design: the camera was not moving
smoothly around a large space, but was instead jumping instantaneously from
one stage boundary to another. The wraparound technique made this invisible
on the 2D plain; however, objects placed at different distances from the camera
would reveal the jump. I was forced to find an alternative method for creating a
sense of depth; ultimately resorting to an orthographic view with false parallax
applied manually to background and foreground elements.

The following images are examples of the final visual style I achieved.

16

17

18

19

5 Analysis

Achieving my design goals in this project was a very steep challenge for me.
This was my first attempt to make a complete program in C++, and also my
first encounter with object-orientated programming practices within the context
of real program development. Broadly speaking, I feel that the project was a
success; both in the sense that I achieved my stated goal, and also on the
personal level, in that I significantly advanced my own skills over the course
of the project. However as with any project, some aspects were less successful
than others. Following is a discussion of the successes and failures of the project
as I perceive them.

5.1 Successes

My stated aim was to create a program which provokes playful and exploratory
interaction from users. In this sense I believe it was a success. In the late
playtests I conducted during the game’s development, users seemed compelled
to continue experimenting with the game beyond the stage of initial curios-
ity. Continual visual feedback was a central component of my original design,
intended to emphasize and encourage player interaction; the first sign which sug-
gested the feedback was a success was when my friend and playtester insisted
on colliding an in-game object against a wall repeatedly for several minutes.
This behaviour lead me to believe that my ideas on interface design and visual
feedback were at least partially correct.

Other user behaviours lead me to draw favourable conclusion about different
aspect of the design. One reaction I noted during development was that when
presented with an abstract image, users can fully misinterpret even the most
minimalist of screen compositions. Some players were confused by the appear-
ance of stars in the background of the composition; temporarily abandoning
their progress in an attempt to provoke a response from the background ele-
ments. To me this helped confirm that a minimalist visual style was the correct
choice for this project. A more detailed and elaborate style would likely have
proved too confusing for players to interpret easily without instruction. This
observation also argued in favour of the staged, sequential reveal of the game’s
visual elements.

The control system was perhaps the biggest unknown quantity when it came
to implementing the game. I knew that in order for the controls to be intuitively
accessable, they had to be immediately available on the mouse- precluding the
use of keyboard input. I proposed several ideas for achieving a one-button
control scheme in the design phase; however, it was possible that all of these
ideas would prove to be uncomfortable or unsatisfying. The tactile quality of
a control system cannot be established without hands-on testing. With this
in mind, I had to implement several of my proposed control schemes before
finding the most successful. The rotational movement combined with ‘click-to-
jump’ proved to be easily the most tactile and entertaining of them all. The
final implemented control scheme seems to work well with a mouse; and in

20

addition, the control system becomes significantly more fluid and ergonomic
when operated via a graphics tablet.

5.2 Shortcomings

One of the immediate shortcomings of this project is that its overall success is
not easy to evaluate. I set out several goals when embarking on this project,
but it is difficult to establish whether all or most of them have been met. The
primary goal was to make a game which users should feel compelled to play
to its conclusion, without any prompting or instruction. Unfortunately I did
not allocate enough time to the playtesting stage to establish whether this is
really the case. Initial responses were positive; but it would much require more
thorough testing to discover if the project is a success in this regard.

Similarly, one of the main principles which informed the game’s visual style
is the ludic design idea of ‘projection’. This is the idea that ambiguity can
stimulate a richer and more imaginative response from users than literality[3].
It might be the case that the game’s visual style has this effect on users; however,
the scope of this project did not encompass a methodology for finding out. One
way of doing this might have been to “re-skin” the game to a style closer to a
real-world scenario. For example, the three stages of player evolution could be
loosely refitted to represent the story of a bird escaping the nest and developing
the ability to fly. This version of the game would then need to be tested with
audiences alongside the abstract version, to establish which presentational style
creates the most compelling experience.

Other more specific problems exist in my design. Some playtests have sug-
gested that the opening section of the game is slightly too cryptic in its presenta-
tion; users would sometimes fail to discover the type of input needed to progress
beyond the opening screen. The rotary mouse control scheme is unusual to the
point that it simply does not become clear to some players. One way to re-
balance this would be to include some more subtle visual cues in the opening
stages - a spinning light or rotating object - together with more instantaneous
feedback when the correct type of control is performed.

Another issue is the final “flying” stage of player evolution. This aspect
of the game did not get as much development time as I had hoped for. The
first problem with its implementation was the way in which the flying state is
triggered; there seems to be an element of randomness to its appearance, which
undermines its effectiveness as a reward for user input. Originally I planned
to implement a more complicated set of conditions for triggering the flying
stage; a chain of well-timed jumps would need to be executed sequentially at
top speed, with the final correct jump launching the player into flight. This
would have established a much stronger connection between the player’s input
and the appearance of the flying stage. Ultimately, there was not enough time
to implement this feature.

A second problem with the flying stage is that the movement during this sec-
tion seems to lack the physicality achieved elsewhere in the game. The ground-
based movement system has a very pronounced sense of inertia, emphasized by

21

the control system, which helps create the impression of a physical space. The
flying stage lacks this sense of weight; it sweeps around instantly with no re-
sistance to player input. An additional control challenge would probably have
made this section a more engaging and satisfying experience.

On the technical side, I felt that my programming abilities were only just
sufficient to complete this project. The program performs adequately, but the
code used to achieve this result falls significantly short of efficiency. Collision
detection was a particular area which I felt was poorly executed in this program.
Part of the problem was my unfamiliarity with object orientation making it
difficult for me to plan the program’s structure in advance.

6 Conclusion

I believe this project has been very successful for me. Initial goals aside, the
full implementation of the game in C++ and OpenGL has been a significant
personal achievement. In addition to this, the resulting program does appear
to achieve my initial goal; the feedback received from test audiences has been
positive, and the game appears to engage users in the way I intended. Because
of this I feel that I have managed to bear out, at least partially, some of my
original ideas relating to game design and ludic design principles.

22

7 Bibliography

References

7.1 Game and Interface Design

[1] Bitt Animation and VFX, http://www.bittanimation.com/ [Accessed March
2008]

[2] Gaver, B., 2002. Designing for Homo Ludens, i3 Magazine No. 12

[3] Tarkaa, M, 2002. Ludic Design - Notes from Bill Gaver’s lecture at
UIAH, Helsinki, http://interactionmasters.uiah.fi/notes/billgaver.htm [Ac-
cessed March 2008]

[4] Tidwell, J. Designing Interfaces, http://designinginterfaces.com/ [Accessed
March 2008]

[5] Sony Computer Entertainment 2006. Locoroco, released for the PSP hand-
held system

[6] Morrison, M., Mitchell, P., Brereton, M., 2007. The Lens of Ludic Engage-
ment: Evaluating Participation in Interactive Art Installations, ACM Mul-
timedia Interactive Arts Program

[7] Rouse, R., 2001. Games on the Verge of a Nervous Breakdown: Emotional
Content in Computer Games, Computer Graphics Magazine

7.2 Programming Resources

[8] Burns, R. and Sheppard, M., N Tutorials - Broad-Phase Collision,
http://www.harveycartel.org/metanet/ [Accessed March 2008]

[9] Andra, M. 2002. GFX with SDL, http://cone3d.gamedev.net/ [Accessed
March 2008]

[10] OpenGL FAQ, http://opengl.org/ [Accessed March 2008]

[11] World Coordinate Picking, http://djfroofy.livejournal.com/3924.html [Ac-
cessed March 2008]

[12] Linked List Class - C++, http://www.dreamincode.net/code/snippet82.htm
[Accessed March 2008]

[13] Shreiner, D., Woo, M., Neider, J., Davis, T., 2006. OpenGL Programming
Guide - Fifth Edition

23

