PRMan Shaders for a Fish Tank

Rachel Williams

PRMan Shaders for the Creation of a Realistic Fish Tank
Rachel Williams
Innovations Project

BACVA 3

Aims

In this project I aim to write four PRMan shaders for the use in the creation of a realistic looking fish tank. The four shaders will be
· Glass – for the tank

· Water – for the volume of water in the tank

· Water surface – to create the illusion of ripples being created by the filter

· Bubbles – produced by the filter

In the production of these shaders I will research into how accurate reflections and refractions are calculated for use in a cg environment. I will also look at other methods of creating the materials for a realistic fish tank and whether or not they produce better effects.
Creation Process

In order to create the shaders needed to produce a realistic fish tank I needed to research into many different areas: I needed to study real glass and water to determine what properties affect the aesthetics of the two materials; existing shaders in film; methods used to create the materials without writing shaders; how to write a shader; how to simulate the physical properties of light interaction with the materials; how to implement these in PRMan; and the creation processes of existing shaders.
Real glass and water

The best way of replicating an object is to first look at how it exists in the real world. It is important to look at what affects it and what it affects. I started by looking at images of different types of bodies of water to look into the aesthetics of the material. I looked at pure water, fish tank water and ocean water. I then researched into the properties of the two materials that I wanted to simulate, and how they interact with light and with each other. The three properties I looked into were refraction, total internal reflection and depth perception.

From looking at the aesthetic and physical properties of water and its interaction with light, I discovered that to create realistic looking water I would need to
· Create surface ripples, possibly with the use of displacement

· Create bubbles

· Create tiny specs inside the water

· Use equations E1 and E3 to create physically accurate reflections and refractions.

· Use equation E4 to stop total internal reflection creating undesired effects

To create the glass I would be able to modify the water shader by

· Removing the bubbles, surface ripples and specs

· Altering the index of refraction according to table T1

Existing Shaders in Film

Next, I researched into how cg water is used in existing films. Having looked at the fish tank in Pixar’s Finding Nemo, I was able to see that creating realistic water depended on using, or faking, the effects created by the above mentioned equations. Looking at Finding Nemo simply confirmed how I felt I needed to go about creating the materials.

Methods of creating Realistic Glass and Water without Writing a Shader

Before I started to write the PRMan shader I decided to investigate the other methods that were available to me, of creating a realistic looking fish tank. I started by using Maya and Mental Ray, and then experimented with using the built in slim shaders.

Using Mental Ray I found that I was able to quickly create fairly realistic shaders for the materials. I did not like the bubbles or the way that a speckled effect was created. I did not spend too much time creating these materials as I felt I should concentrate on the PRMan shaders. Therefore, I could produce better effects by tweaking the Mental Ray shaders or finding other ways, within Mental Ray, of creating them. I liked the two final renders and think that these can be used to give an idea of what could be produced if I had the time.
Writing a PRMan Shader

In order to create a glass shader I first had to learn how to write in shading language. I looked at how to create simple shaders, so that I had a basic understanding of the terminology used and how to apply simple properties to materials such as displacements, painted textures, environment maps etc.

Simulating the Physical Properties of Light Interaction with Glass and Water
Having gained the understanding of the processes involved in calculating accurate reflections and refractions in the real world, I needed to find a method of simulating these effects in cg. I researched into environment mapping and ray tracing to create the effects. I found that although environment mapping can create accurate looking reflections it cannot perform any refraction. Therefore I looked into how ray tracing works to create these effects. Having looked at how ray tracing works and its capabilities, I started to look at how to implement the light interaction equations. I examined how these equations could be written as functions, and how to use them in PRMan. In doing this I gained the understanding of the process taken by the ray tracer to calculate the results which helped when writing the shader.
Existing Shaders’ Creation

Having researched the aesthetics of real water and existing water shaders, how light interacts with materials, writing simple shaders and ray tracing and its implementation, I started to look into how existing water shaders were created. This gave me an idea of how to use the ray tracing functions to create my own shaders.

Theories of how to write the shaders

I came up with theories of how to create the shaders based on all of the above research. These theories were:

Glass

Using the ray tracing functions reflect, refract, fresnel and trace I would be able to create the reflections and refractions needed.

Volume of Water

Using the glass shader, and adapting it to use the index of refraction for water I would be able to create a volume of water that refracts and reflects.
Surface

Using the ripple displacement shader that I found on the internet, and combining it with an fbm displacement I would be able to create the ripples produced by the filter in the tank. I could set the origin of the ripple to the position of the water filter and the fbm displacement would give the surface more of a realistic look.

Bubbles

Using the water shader and changing the index of refraction to that of light traveling from water to air, would create hollow bubbles in the water.

Writing the Shaders
Based on the theories above I started to write the shaders.
I found it very difficult to write the shaders. I am not very confident in programming but I felt that it would be relatively simple to produce physically accurate light interaction, and that I would, if I had time, look into methods of cheating the light interaction to reduce render times. I thought that the second part was where I would have problems.
However, the first problem that I encountered was that I could not get the ray tracing functions to work properly. I had managed to create the reflections, but the light was not refracting. I tried many different things to try to get the refractions to occur; changing the render globals; making sure the geometry was set as traceable; and applying existing shaders with the refract function to my geometry. I tried working through numerous existing shaders, looking at how they created refractions, what functions were used and in what constructs. I tried to modify these shaders to see if this would help but it did not. I looked for tutorials on the internet, but found that there were no useful ones around. I tried applying the shaders to different geometry and in different ribs. The more I looked at the code for different shaders the more confused I became, and the more muddled the code became. As none of the approaches I had tried made a difference, and even the existing shaders were not refracting, I started to think that it was not my code that was the problem and looked into rendering with BMRT as a ray server. I read through the rayserver DSO shadeop code for ray tracing to see if this would help me understand where I was going wrong. Although it gave me more of an understanding of how the ray tracing functions are computed it did not help fix the problem. In the end I overcame this problem by creating one final, less muddled, rib and applied my original shader – the refractions worked.
The second problem I had was that when the refractions were occurring so was total internal reflection. To overcome this problem I needed to not trace the rays which hit the surface at the critical angle. I thought that if the angle of incidence of the ray was less than the critical angle then the ray should be traced, if not then it should be disregarded. I tried many ways of coding this and again tried implementing the ways which had already been used in existing shaders. This did not work, and I have as yet to find the answer to my problem.
Without correct refractions the glass, water and bubble shaders would not work. This function is an integral part of all three of these shaders, without it, the objects would appear to be filled with air. This would work in the case of the bubble but only if it were not inside a body of water. As a bubble for inside a fish tank I think that it would need to refract the light to create the illusion that there is water surrounding it.

Real Glass and Water

Pure Water

[image: image1.jpg]
fig 1. Glass of Water
[image: image2.jpg] [image: image3.jpg]
 fig2. Glass of Water showing Distortion

 fig 3. Top down view of Glass of water
Aesthetic Properties
· Completely clear

· Distorts objects behind

· Objects appear closer than they really are

· When in a cylindrical container, and close to the objects behind, they appear to be the wrong way round

· Surface completely still

Fish Tank Water
Fig 4-8 Show the same fish tank at different angles
[image: image4.jpg]
fig 4.
[image: image5.jpg] [image: image6.jpg]
fig 5.

fig 6.
[image: image7.jpg] [image: image8.jpg]
fig 7.

fig 8
Aesthetic Properties

· Contains tiny specs

· Surface has small rippling caused by the filter
· Objects appear bigger than they really are
· The objects are reflected when looking up at the surface and in the sides of the container

· Bubbles caused by filter
Ocean water

[image: image9.jpg] [image: image10.jpg]
fig 9. Surface of ocean water

 fig 10. Surface of clear ocean water
[image: image11.jpg]
fig 11 Underwater
Aesthetic Properties

· Gets murky with distance
· Surface is bumpy

· Takes blue color from sky

Glass

[image: image12.jpg] [image: image13.jpg]
fig 12. Glass boxes

fig 13. Solid Glass Box
[image: image14.jpg]
fig 14. Thick glass
Aesthetic Properties
· Refraction is more visible in thicker glass as the light has further to travel in the refracted direction before leaving the material
· The edges of glass cubes give interesting results where the light is refracted in different directions

· Thick glass creates interesting caustic effects
· The objects inside a glass cube are reflected onto every face.
Bubbles

[image: image15.png] [image: image16.jpg]
fig 15. Bubbles in water

 fig 16. Bubbles in water showing reflections
[image: image17.jpg] [image: image18.jpg]
fig 17 Bubble from straw

fig 18. Bubbles in the air
Aesthetic Properties

· Reflect the whole environment making the objects appear bigger
· Although the bubbles are hollow and do not refract the light when in the air, when underwater, refraction occurs when the light leaves the bubble and enters the water

· Soapy bubbles are colorful, whereas bubbles in water only take on the colors from their environment

Light Interaction

Reflection
When a ray of light hits a smooth surface, the light bounces back off, creating a reflection. The direction of the light that bounces off the surface is calculated using

Ls = L – 2(L · N)N
E1

Where Ls = reflected light vector

L = light vector

N = surface normal

Refraction

When looking through a volume of water the objects behind it appear distorted, this is due to refraction. Refraction occurs when the speed of light is altered when it passes from one material into another. The refractive index is the ratio of the speed of light in a vacuum to the speed of light in a material. The index of refraction is defined by

n = c/v

E2
where c = speed of light

 v = velocity of light in material

The refractive indices for the 3 materials I am concerned with are

	Material
	Index of Refraction

	Air
	1.0003

	Glass
	1.52

	Water
	1.33

T1

The speed of refracted light is dependant on the density of a material. When light travels into a material of higher density, the speed of light decreases, bending the light towards the surface normal. When light travels into a material of less density the light is therefore bent away from the surface normal, as the speed at which the light is traveling increases. This bending of light rays is what creates the distortion of objects.

Snell’s law states

n¹ sin(ө¹) = n² sin (ө²)

E3
where n = refractive indices of material 1 and 2

 ө = angle of light in the material with respect to the surface normal

[image: image19.jpg] fig 19. Refraction of light
Total Internal Reflection

Total internal reflection occurs when the light traveling from a material into a less dense material hits the surface at such an angle that it is reflected back into the dense material. This angle is known as the critical angle and can be calculated using Snell’s Law

sin(ө) = n¹ / n²

E4

[image: image20.jpg]
fig 20. Critical Angle
Depth Perception

When looking through a dense material, refracted light causes objects to appear closer than they really are.
[image: image21.jpg]
fig 21. Depth Perception
The apparent depth is relate to actual depth by

d¹ = d(n² / n¹)

E5

Existing shaders

Use of CG water in films
Many films already use cg water to create special effects. The most obvious film which is particularly relevant to my project is Pixar’s Finding Nemo, in which there is a fish tank with realistic looking water.
Fig. 22-41 Screen Shots from Pixar’s Finding Nemo
[image: image22.jpg][image: image23.jpg]
fig 22 Tank

fig 23Water Surface
The filter in the tank is creating ripples across the top of the water. These ripples are highly reflective and as the movement occurs the refraction of light creates interesting distortion. When looking up at the surface of the water, the inside of the tank is reflected.
[image: image24.jpg][image: image25.jpg]
fig 24Reflection in glass

fig 25Reflection
The glass sides of the tank create reflections of the fish inside and of the environment around the tank.

[image: image26.jpg]

fig 26 Refraction
When looking through the glass at an angle the refraction of light makes the fish appear flatter than normal

[image: image27.jpg][image: image28.jpg]
fig 27 Water Surface

fig 28 Ocean Surface
The surface of the ocean is similar to the surface of the water in the tank, however, the ripples and displacement is on a larger scale, and as the water is deep it is not possible to see what is underneath the surface.
[image: image29.jpg]
fig 29Bubbles
[image: image30.jpg][image: image31.jpg]
fig 30More Bubbles

fig 31Even more bubbles
The bubbles used in Finding Nemo do not show any reflections. Although they are aesthetically pleasing I feel that this makes the bubbles look less real.

Free shaders available on the internet

I found a few water shaders on the internet, and looked into how they were made. Most of the water shaders around seemed to be either for games, which were therefore fairly unrealistic, or ocean shaders. The best looking water shaders I found were
Ocean Water

This ocean shader
 uses the fresnel equations to calculate the reflectivity of the surface and implements ocean wave algorithms to calculate the displacement of the surface.

[image: image32.png] [image: image33.png]
fig.32 Existing Ocean Shader

 fig 33 More cg Ocean
Glassrefr

I looked at the code used to create the standard glass shader in slim to see how the reflections and refractions were created. This shows that ray tracing is used to find the direction of the light and then refract it. Although the refraction looks accurate and interesting, I do not feel that the overall shader creates a very realistic looking piece of glass
[image: image34.jpg]
fig 34Existing Glass Shader
 surface

 glassrefr (

 float Kr = 1; /* ideal (mirror) reflection multiplier */

 float Kt = 1; /* ideal refraction multiplier */

 float ior = 1.5; /* index of refraction */

 float Ks = 1; /* specular reflection coeff. */

 float shinyness = 50) /* Phong exponent */

 {

 normal Nn = normalize(N);

 vector In = normalize(I);

 normal Nf = faceforward(Nn, In, Nn);

 vector V = -In; /* view direction */

 vector reflDir, refrDir;

 float eta = (In.Nn < 0) ? 1/ior : ior; /* relative index of refraction */

 float kr, kt;

 Ci = 0;

 /* Compute kr, kt, reflDir, and refrDir. If there is total internal

 reflection, kt is set to 0 and refrDir is set to (0,0,0). */

 fresnel(In, Nf, eta, kr, kt, reflDir, refrDir);

 kt = 1 - kr;

 /* Mirror reflection */

 if (Kr * kr > 0)

 Ci += Kr * kr * trace(P, reflDir);

 /* Ideal refraction */

 if (Kt * kt > 0)

 Ci += Kt * kt * trace(P, refrDir) * Cs;

 /* Specular highlights */

 illuminance (P, Nf, PI/2) {

 vector Ln = normalize(L); /* normalized direction to light source */

 vector H = normalize(Ln + V); /* half-way vector */

 Ci += Ks * pow(H . Nf, shinyness) * Cl;

 } }
TL_rglass

I found a glass shader
 which calculates the refractions in a different way. This shader looks more realistic than the slim glass, however there is no code to stop total internal reflections.
[image: image35.png]
fig 35 Another Glass Shader
/*

 * TL_rglass -- glass shader with prman refraction, reflection, frensel

 *

 * DESCRIPTION:

 * Example glass shader demonstrating prman refraction, reflection,

 * and frensel.

 *

 * PARAMETERS:

 * Ka, Kd, Ks - the usual

 * roughness - the usual

 * specularcolor - the usual

 * Kr - reflection strength

 * Kt - refraction strength

 * refractionIndex - snell's refraction index

 * mapname - environment map

 *

 * AUTHOR: Tal Lancaster

 * tal AT renderman DOT org

 *

 * History:

 * Created: 8/27/99

 * 1999/09/12 tal -- originally was an example of refraction, now can

 * use reflect, too.

 *

 */

surface TL_rglass (

 float Ka = 1;

 float Kd = 0;

 float Ks = .25;

 color specularcolor = color 1;

 float Kr = 1;

 float Kt = 1;

 float roughness = 0.12,

 refractIndex = 1.1;

 string mapname = "";

)

{

 normal Nf;

 vector NI;

 vector Rfrdir; /* refraction direction */

 vector Rfldir; /* reflection direction */

 color Cfr = color 0; /* color from refraction */

 color Cfl = color 0; /* color from reflection */

 NI = normalize(I);

 Nf = normalize (faceforward(N, I));

 if (mapname != "") {

 /* ok have an environment map so use it. */

 if (Kt > 0) {

 Rfrdir = refract(NI, Nf,refractIndex);

 Rfrdir = vtransform("world", Rfrdir);

Cfr = trace(P,Rfrdir);

 }

 if (Kr > 0) {

 Rfldir = reflect(NI, Nf);

 Rfldir = vtransform("world", Rfldir);

 Cfl = trace(P,Rfldir);;

 }

 }

 Oi = Os;

 Ci = Cs * (Ka * ambient() + Kd * diffuse (Nf) +

 specularcolor * Ks * specular (Nf, -NI, roughness)) +

 Kt * Cfr + Kr * Cfl;

}

3dsMax glass and water

This shader
 was created using 3Ds Max. It uses a built in ray tracing shader. I really like the effect that this produces and think that it looks realistic.
[image: image36.jpg] fig 36 Glass created in 3ds Max
Deepshade water

[image: image37.jpg] [image: image38.jpg] [image: image39.jpg]
fig 37 Existing Water Shader 1
fig 38 Existing Water Shader 2
fig 39 Existing Water Shader 3
These shaders
 are written for Cinema 4D. I do not know how they were created but I feel that they are some of the more realistic water shaders that I could find on the internet.
Creating Water without Writing a Shader
Using Mental Ray

It is possible to create glass and water in Maya. One way of creating realistic looking reflections and refractions is to use Mental Ray. This is Maya’s ray tracer. Mental Ray comes with two material shaders – a dielectric
 material shader and a diffuse glossy specular material shader.

Glass

[image: image40.jpg]
fig 40. Glass Shader on Sphere
[image: image41.jpg] [image: image42.jpg]
fig 41 Glass Tank

fig 42 Inside Glass Tank

I used a dielectric material shader, a dielectric material photon shader, and a shadow shader, attached to a phong material to create the images below. The light used is a photon emitting point light.

Volume of Water
[image: image43.jpg] [image: image44.jpg]

fig 43 Water in glass tank 1

fig 44 Water in glass tank 2
[image: image45.jpg] [image: image46.jpg]

fig 45 Water in glass tank 3

fig 46 Water in glass tank 4
[image: image47.jpg]

fig 47 Water in glass tank 5

The same shader is used for the water as for the glass. The reflections and refractions created using this method work quite well. The environment in reflected in the glass and the water refracts the light at a plausible level. However, when I applied the shader to the water, a speckled effect was created. This was due to the photons emitted by the light. I like the reflection created on the glass when inside the tank when the water is there.
Surface

[image: image48.jpg] [image: image49.jpg]

fig 48. Water Surface 1

fig 49. Water Surface 2
[image: image50.jpg] [image: image51.jpg]
fig 50. Water Surface 3

fig 51. Water Surface from under water

I tried to create ripples on the surface of the water, using a wave deformer applied to a nurbs plane. I feel that the waves created are too large, even though the amplitude and wavelengths were set to the minimum values. From inside the water looking up at the surface creates interesting distortion. I feel that if the waves were smaller, this could look quite effective.
Bubbles

[image: image52.jpg] [image: image53.jpg]
fig 52. Bubbles 1

fig 53. Bubbles 2
[image: image54.jpg] [image: image55.jpg]
fig 54. Bubbles 3

fig 55. Bubbles 4
[image: image56.jpg]
fig 56. Bubbles 5
I experimented with different shaders to see what looked most like bubbles. In the end I used a phong shader with high reflectivity to create the bubbles. As the bubbles are filled with air, the light is refracted away from the normal. I tried using different indices of refraction to see what would give the best result. I found that this was 1.5. I do not feel that the bubbles look realistic.
Final Renders
[image: image57.jpg] [image: image58.jpg]
fig 57. Final Mental Ray Render 1

fig 58. Final Mental Ray Render 2
Simulating the interaction of Light with Glass and Water

Environment Mapping and Ray Tracing

In order to create realistic looking reflections, the shader has to know what to reflect onto the geometry. There are two ways to do this – environment mapping and ray tracing.

Environment Mapping

Environment mapping is much faster than ray tracing, and in some circumstances work very well to create a fake environment, where ray tracing would be unpractical.
There are two different types of environment maps – cube face and polar. Cube face environment maps are made up of six square images, showing the six sides of a cubic space, stitched together. Polar environment maps are a single image showing the environment as if it had been unwrapped from a sphere. For more on environment mapping see Essential RenderMan Fast
. Both environment maps must be converted to .tx format for the renderer to understand. This can be done by the functions:

MakeCubeFaceEnvironment "file.jpg" "file.tx" "filter" 2 2
MakeLatLongEnvironment "file.jpg" "file.tx" "filter" 2 2
Ray Tracing

While environment maps can create effective reflections in some circumstances, there are times when more accurate reflections are needed. In these circumstances, ray tracing can be used.
Ray tracing is the process of following a ray of light backwards, from the geometry on which it has landed, to its point of origin. This may be a light source or an object off which the light has bounced. When the origin has been found, the color of this point can be used to determine the color of the point on the shader from which the light was traced. This means that accurate reflections can be produced. This method of “tracing rays” can be used to create accurate refractions, which would be unobtainable using environment mapping. As the direction of the ray is known, it is possible to change this direction, refracting the light.
Implementation of Ray Tracing
PRMan

There are two different methods of rendering, these are scanline renderers and ray tracers. Scanline renderers do not support ray tracing, whereas ray tracers do. In order to create ray traced effects a ray tracing engine must be used. These renderers are much slower than scanline renderers and so are not the preferred method of rendering. In order to overcome this problem, scanline renderers started to be developed, which included, or were compatible with, ray tracing engines. These ray tracing engines could be invoked by calling a simple shading operation from inside the shader, meaning that scenes which did not need ray tracing could be rendered with the much faster scanline renderer.

PRMan is based on the REYES algorithm and is a scanline renderer. Therefore, when it was first developed it naturally did not support ray tracing. Ray traced effects could be created by rendering with both PRMan and BMRT. Since the release of PRMan 11.0 ray tracing can be performed using PRMan’s own built in ray tracing facility.

Using the ray tracing functions in PRMan is much simpler than having to set up BMRT as a rayserver. Using PRMan on its own to ray trace only requires the setting of traceable geometry and enabling ray tracing in the render globals. When the raytracing functions are called, PRMan does the rest.
Blue Moon Rendering Tools - BMRT

BMRT is a PRMan compliant ray tracer, and until the release of PRMan 11.0, was the most popular way of creating ray traced effects in PRMan. PRMan’s shading language contains ray tracing functions which used to only be functional when used in conjunction with BMRT. The function trace(), used to compute global visibility, for example, would always return (0,0) when used without BMRT. As a ray tracer BMRT is much slower than PRMan at rendering the geometry and so as a result of this, PRMan and BMRT were used in conjunction with each other to exploit their own strengths, and avoid their weaknesses.

BMRT can still be used as a ray server for PRMan, letting PRMan perform the actual rendering, whilst BMRT simply provides a way of calculating the ray tracing functions. PRMan can call functions in a DSO shadeop, called rayserver.so, which will then make ray queries to BMRT.
When BMRT is used as a ray server for PRMan, there are three steps to invoking the ray server. Shaders using the ray tracing functions must #include “rayserver.h”. The shaders must be compiled with both the BMRT and PRMan shader compilers. The DSO rayserver.so must be in the include path when compiling with the PRMan shader compiler. Finally the frankenrender script which comes with BMRT must be run so that the correct arguments are passed to the correct compiler.
Fresnel Equations for Dielectric Materials

Fresnel equations can be used to calculate the amount and direction of light reflected and refracted from the surface.

Derivation of Fresnel

The law of reflection states that the reflected angle is equal to the incident angle

өr = өi

E6
Using Snell’s Law we can relate the angle of refraction to the angle of incidence.

nt sin өt = ni sin өi
E7
[image: image59.jpg]
fig. 59 geometry of reflection and refraction
L = Light vector

N = Surface normal

R = Reflected vector

T = Transmitted vector

The fresnel equations are a solution to Maxwell’s equations for electromagnetic wave behavior at a smooth interface between two materials. These equations allow us to find the fractions for the reflected and transmitted incident energy at a material’s surface. The ratios of the amplitude of the reflected ray to the incident ray for dielectric materials are

r ֽ ֽ = nt(N ·L) + ni(N ·T)

 nt(N ·L) – ni(N ·T)

 r ֽ = ni(N ·L) + nt(N ·T)

 ni(N ·L) - nt(N ·T)
E8
where ni and nt = the indices of refraction of the two materials

N = Surface normal

L = Light vector

As the energy in a ray is proportional to the square of the amplitude, and the ratio of reflected energy to incident energy is the square of r, the equations for fresnel reflectance and fresnel transmittance are expressed as follows.

Fr = ½(r ֽ ֽ² + r ֽ ²) = Фr
 Фi

E9
 Ft = 1.0 – Fr

E10
where Ф = energy flux (energy per unit time)

The derivation of fresnel is described in more depth in Illumination and Color in Computer Generated Imagery

Implementation of Reflect, Refract and Fresnel

The three main functions needed to create realistic looking glass and water are reflect, refract and fresnel.

Equations E1, E3, E8 and E9 can be used to create functions which produce physically correct results. As are described in Production Rendering Design and Implementation

Reflect

vector reflect(vector L, vector N)

{

vector LdotN = DotProduct(L, N);

return L – 2*(LdotN)*N;

}

Refract

vector refract(vector L, vector N, float eta)

{

vector LdotN = DotProduct(L, N);

float k = 1 – eta * eta * (1 – (LdotN*LdotN));

return(k<0?0 : eta*I - (eta*LdotN+sqrt(k))*N);

}

Fresnel

fresnel(vector L, vector N, float eta, output float Kr,

output float Kt, output vector R, output vector T)

{

vector R = reflect(L, N);

vector T = refract(L, N, eta);

float cos_theta1 = DotProduct(N,R);

float cos_theta2 = DotProduct(N, T);

float ppara = (cos_theta1 – eta * cos_theta2)

/(cos_theta1 + eta * cos_theta2);

float pperp = (eta * cos_theta1 – cos_theta2)

/(eta * cos_theta1 + cos_theta2);

Kr = 0.5*((ppara*ppara)+(pperp*pperp));

Kt = 1-Kr;

}
Reflect, Refract and Fresnel in PRMan

These functions are built into the RenderMan shading language and can be called by

vector R = reflect(L, N)

Calculates the direction of the reflection ray

vector R = refract(L, N, eta)
Calculates the direction of the refracted ray
eta is the ratio of the two refractive indices at the surface

fresnel(L, N, eta, Kr, Kt, R, T)

Calculates both reflection and refraction direction

and returns them in R and T
color trace(location, direction)
trace must is used to trace the ray
Final Code
Glass/Water

I have been unable to finish the glass and water shader in the time given. I have not been able to overcome the problem discussed earlier. This is the code that I have produced so far.
surface myGlass (

 float Ka = .001;

 float Kd = 0;

 float Ks = .3;

 float Kr = 0.005;

 float Kt = 1;

 float refrior = 1.6;

 float roughness = 0.12;

 color specularcolor = 1;)

{

 normal Nf;

 vector V;

 vector refrDir;

 vector reflDir;

 float kr, kt;

 color Cr = color 0;

 color Ct = color 0;

 float eta = (N.I < 0) ? 1/refrior : refrior;

 Nf = normalize (faceforward(N, I));

 V = normalize(I);

if (N.I < 90)

{

fresnel(V, Nf, eta, kr, kt, reflDir, refrDir);

reflDir = reflect(V, Nf);

reflDir = vtransform("current", reflDir);

}

else

{

fresnel(V, Nf, eta, kr, kt, reflDir, refrDir);

refrDir = refract(V, Nf,refrior);

refrDir = vtransform("current", reflDir);

}

Ct = trace(P,reflDir);

Cr = trace(P,refrDir);

Oi = Os;

Ci = Cs * (Ka * ambient() + Kd * diffuse (Nf) +

specularcolor * Ks * specular (Nf, -V, roughness)) +

Kt * Cr + Kr * Ct;

}
[image: image60.png] [image: image61.png]

fig 60 Render produced by above code

fig 61. Produced when if statement is if

(N.I>0)
[image: image62.png]

fig 62. Produced when refrDir is not traced

With help from Ian I was able to produce this code. However, I ran out of time and so was unable to test it.

surface myGlass (
 float Ka = .001;
 float Kd = 0;
 float Ks = .3;
 float Kr = 0.5;
 float Kt = 1;
 float refrior = 1.6;
 float roughness = 0.12;
 color specularcolor = 1;)

{
 normal Nf;
 vector V;
 vector refrDir;
 vector reflDir;
 float fKr, fKt;
 color Cr = color 0;
 color Ct = color 0;
 float eta = (N.I < 0) ? 1/refrior : refrior;

 Nf = normalize (faceforward(N, I));
 V = normalize(I);

 if (N.I < 0) //N.I is cos(theta), so this is for front ref only.
 {
 fresnel(V, Nf, eta, fKr, fKt, reflDir, refrDir); //fresnel calculates
the directions so you don't need to do them again
 Ct = trace(P,reflDir)*fKr; //Only call these if we've worked on
reflDir
 Cr = trace(P,refrDir)*fKt; //Scale by the values returned back from
fresnel
 }

 Oi = 1;//Oi is 1 because we're generating our own transparency with
trace()
 Ci = Cs * (Ka * ambient() + Kd * diffuse (Nf) + Kt * Cr) //Added
transmitted to diffuse, so it's colored
 specularcolor * (Ks * specular (Nf, -V, roughness) + Kr * Ct);
//added reflected to secular so it's not...
}

Surface

For the surface of the water I started by creating a nurbs plane with a reflective surface and an fbm displacement shader to give an uneven surface. I experimented with using environment mapping in this shader too.

[image: image63.png]
fig 63. Water surface with fbmDisplacement
I created the displacement using:

displacement fbmDisp(float Km = 0.5;

)

{

vector NN = normalize(N);

float i;

float mag = 0;

float freq = 1;

for(i=0;i<6;i+=1)

{

mag+=2*((float noise(P*freq)-2)/freq);

freq*=2.1;

}

mag /= (length(vtransform("object",NN))*50);

P=P+mag*NN*Km;

N=calculatenormal(P);

}

I think that this worked quite well for a first attempt. Next I tried writing a shader to displace the surface in order to create the effect of ripples.
[image: image64.jpg]
fig 64. Ripple effect
I feel that this effect creates quite a realistic looking ripple which could be used to create the displacements created by the filter, when used in conjunction with the water shader.
displacement ripple(float Km = 0.01,

numwaves = 10,

point1 = 0.03,

point2 = 0.025,

freq = 2,

 amp = 2;

)

{

float sdist = s - point1;

float tdist = t - point2;

float dist = (sqrt(sdist * sdist + tdist * tdist)*freq);

float hump = (sin(dist * 1 * PI * numwaves)/amp);

normal
n = normalize(N);

 P = P - n * hump * Km;

n = calculatenormal(P);

}

Bubbles

I have not attempted to make any bubbles in PRMan as I spent my time trying to get the water shader working. If I could get the water shader to work then I feel that it would be easy to adapt it to be a bubble.
Critique

Having never written a shader before, this project was completely innovative for me. In order to do the project I had to learn shading language and explore different methods of creating reflections and refractions. I studied how light interacts with materials and how to simulate this in cg. In order to have a good understanding of what I wanted to create I felt that I needed to undertake a great deal of research.
Having done this I thought that I would be able to write the shaders. However, I was not able to complete the shaders in the time available. I find it difficult and time consuming to write even simple code. Even though I now have a good understanding of how the reflections and refractions are calculated I was unable to implement the functions to give accurate refractions.
I think that I created a good displacement shader for ripples. The shading networks that I created in Mental Ray also proved quite effective. If I had more time I feel that I would definitely be able to produce a realistic fish tank in Mental Ray and hopefully be able to complete the PRMan shaders that I set out to create.

From this project I have learnt how to write simple shaders, how ray tracing can be implemented solely in PRMan or in PRMan with BMRT and I have learnt how light interaction is calculated and how it can used to simulate light in a cg environment.
References
Images
Fig 1 Glass of Water Anon.

Fig 2 Rachel Williams

Fig 3 Rachel Williams

Fig 4 Rachel Williams

Fig 5 Rachel Williams

Fig 6 Rachel Williams

Fig 7 Rachel Williams

Fig 8 Rachel Williams

Fig 9 Anon

Fig 10 Available from www.tropicalisland.de/thailand.html

Fig 11 Larry Smarr Available from www.jacbsschool.ucsd.edu/~lsmarr/reefs/phots.html

Fig 12 Available from www.finehomedisplays.com

Fig 13 Jason Hughes “A Link” etched glass cube 8”x8”x8” Available from www.heragallery.org/exhibitions/exhibitionarchive/october2001odyssey.htm

Fig 14 Available from www/simplyincense.co.uk
Fig 15 Available from www.allhatnocattle.net
Fig 16 Tim Ricketts1999 Available from www.ulyasutay.freak.com/Llandaff
Fig 17 Rachel Williams
Fig 18 Available from www.geocities.com/Athens/5904/Ariana/ACS.htm
Fig 19 ABRAMOWITZ, M., NEAVES, S. H., DAVIDSON, M. W., 2003.

Molecular Expressions. Science, Optics and You. Light and Color – Refraction of Light

Available from: http://micro.magnet.fsu.edu/optics/lightandcolor/refraction.html
Fig 20 ABRAMOWITZ, M., NEAVES, S. H., DAVIDSON, M. W., 2003.

Molecular Expressions. Science, Optics and You. Light and Color – Refraction of Light

Available from: http://micro.magnet.fsu.edu/optics/lightandcolor/refraction.html
Fig 21 ABRAMOWITZ, M., NEAVES, S. H., DAVIDSON, M. W., 2003.

Molecular Expressions. Science, Optics and You. Light and Color – Refraction of Light

Available from: http://micro.magnet.fsu.edu/optics/lightandcolor/refraction.html
Fig 22 Pixar’s Finding Nemo
Fig 23 Pixar’s Finding Nemo
Fig 24 Pixar’s Finding Nemo
Fig 25 Pixar’s Finding Nemo
Fig 26 Pixar’s Finding Nemo
Fig 27 Pixar’s Finding Nemo
Fig 28 Pixar’s Finding Nemo
Fig 29 Pixar’s Finding Nemo
Fig 30 Pixar’s Finding Nemo
Fig 31 Pixar’s Finding Nemo
Fig 32 TESSENDORF, J.
Available from: http://graphics.snu.ac.kr/class/na2005/Papers/Simulating%20Ocean%20Water.pdf
Fig 33 TESSENDORF, J., Simulating Ocean Water
Available from: http://graphics.snu.ac.kr/class/na2005/Papers/Simulating%20Ocean%20Water.pdf
Fig 34 PIXAR 2002 RAT5.5/PRMan 11 Documentation
Fig 35 LANCASTER, L., 2005.

Available from: http://www.renderman.org/RMR/
Fig 36 MONTREE, T. Available from www.cgarchitect.com/resources/tutorials/smoke3d/tutorial17.asp
Fig 37 Available from www.deepshade.com
Fig 38 Available from www.deepshade.com
Fig 39 Available from www.deepshade.com
Fig 40 Render by Rachel Williams
Fig 41 Render by Rachel Williams
Fig 42 Render by Rachel Williams
Fig 43 Render by Rachel Williams
Fig 44 Render by Rachel Williams
Fig 45 Render by Rachel Williams
Fig 46 Render by Rachel Williams
Fig 47 Render by Rachel Williams
Fig 48 Render by Rachel Williams
Fig 49 Render by Rachel Williams
Fig 50 Render by Rachel Williams
Fig 51 Render by Rachel Williams
Fig 52 Render by Rachel Williams
Fig 53 Render by Rachel Williams
Fig 54 Render by Rachel Williams
Fig 55 Render by Rachel Williams
Fig 56 Render by Rachel Williams
Fig 57 Render by Rachel Williams
Fig 58 Render by Rachel Williams
Fig 59 Page 21 HALL, R., 1989. Illumination and Color in Computer Generated Imagery

New York: Springer-Verlag
Fig 60 Render by Rachel Williams
Fig 61 Render by Rachel Williams
Fig 62 Render by Rachel Williams
Fig 63 Render by Rachel Williams
Fig 64 Render by Rachel Williams
Further Reading

Books

APODACA, A.A. AND GRITZ, L., 2000. Advanced RenderMan Creating CGI for Motion Pictures
USA: Morgan Kaufmann
BERNT, C., GHEORGHIAN, P., HARRINGTON, J., HARRIS, A., MCGINNIS, C., 2004. Learning Maya 6 Rendering

USA: Alias Systems

HALL, R., 1989. Illumination and Color in Computer Generated Imagery
New York: Springer-Verlag
STEPHENSON, I., 2003. Essential RenderMan Fast.

London: Springer-Verlag.
STEPHENSON, I., 2005. Production Rendering Design and Implementation.
London: Springer-Verlag.
e-journals

2000, The RenderMan InterfaceVersion 3.2

Available from: http://graphics.cs.uni-sb.de/Courses/ws0203/cg/Literatur/RISpec3_2.pdf
APODACA, T. AND PEACHEY, D., 1992. Writing RenderMan Shaders

Siggraph. Available from:

http://www.renderman.org/RMR/Publications/sig92.course21.pdf
CARR, N. A., HALL, J. D., HART, J.C., 2002. The Ray Engine

The Eurographics Association

Available from:

http://graphics.cs.uiuc.edu/~jch/papers/rt2/RayEngine-gh02.pdf
CARR, N.A., HALL, J. D., HART, J. C., 2003. GPU Algorithms for Radiosity and Subsurface Scattering

The eurographics Association. Available from:

http://graphics.cs.uiuc.edu/~jch/papers/gpuradsub.pdf
ENRIGHT, D., MARSCHNER, S., FEDWIK, R., 2002. Animation and Rendering of Complex Water Surfaces

Siggraph. Available from: http://graphics.stanford.edu/papers/water-sg02/
GRITZ, L., HAHN, J., 1996. BMRT:A global illumination Implementation of the RenderMan Standard

Journal of Graphics Tools Vol 1 No 3 pp 29-47

Available from: http://www.siggraph.org/education/materials/HyperGraph/radiosity/jgt96.pdf
GRITZ, L., 1998. Blue Moon Rendering Tools 2.4
Siggraph. Available from:

http://www.siggraph.org/education/materials/renderman/BMRT/docs/rayserver.html
TESSENDORF, J., Simulating Ocean Water

Available from: http://graphics.snu.ac.kr/class/na2005/Papers/Simulating%20Ocean%20Water.pdf.
Web sites/pages

Exploring Mass Density and Archimedes’ Principle

http://home.att.net/~cat4a/archimedes_principle.htm
RenderMan Shaders

Available from: http://www.highend3d.com/renderman/shaders/
RenderMan Shaders
Available from: http://www.turbosquid.com
RenderMan Tutorials

Available from: http://www.deathfall.com/tutorials.php
Water – Fluid Surface Info

Available from: www.leveldesigner.com
1998. Refraction, Snell’s Law and Total internal reflection

Available from: http://physics.bu.edu/py106/notes/Refraction.html
2002. A Tour of Ray-Traced Shading in PRMan
http://www.bu.edu.groups/anim_prman/docs-6.0/prman
ABRAMOWITZ, M., NEAVES, S. H., DAVIDSON, M. W., 2003.

Molecular Expressions. Science, Optics and You. Light and Color – Refraction of Light

Available from: http://micro.magnet.fsu.edu/optics/lightandcolor/refraction.html
BUNKER, S., 2005. RenderMania
Available from: http://www.rendermania.com/
CORTES, R., 2004. The Renderman Academy

Available from: http://www.rendermanacademy.com
ERBACH, J., 2002. RenderMan Shaders

Available from: http://studentpages.scad.edu/~jerbac20/render/render.htm
HIRAMITSU, K., 2000. My RenderMan Study

Available from: http://www.edit.ne.jp/~katsu/rms_raytrace.htm
JIAN, Z., 2005. Traversed Ray Tracing
Available from: http://www.zjprogramming.com/html/traversedraytracing.html
KESSON, M., 2005. Renderman:Raytracing – Surface Names and Ray Names

Available from: www.fundza.com/rman_shaders/ray/ray_labelling/ray_labelling1.html
LANCASTER, L., 2005. RenderMan® Repository
Available from: http://www.renderman.org/RMR/
MAY, S. F., 2000. RManNotes
Available from: http://accad.osu.edu/~smay/RManNotes/shader_basics.html
MONTREE, T., 2005. Tips for Reflection and refraction maps

Available from: http://www.cgarchitect.com/resources/tutorials/smoke3d/tutorial17.asp
RAMIREZ, D., 1995. Common Refraction Questions

Available from: http://www.dram.org/rd/tips/rdrefract.html
WILSON, A., 1999. Procedural Texturing

Available from: http://www.cs.unc.edu/~awilson/class/238/museum-explanation.html
Other

PIXAR 2002 RAT5.5/PRMan 11 Documentation
� Dielectric materials are electrically non conducting, or insulating materials

� TESSENDORF, J., Simulating Ocean Water

Available from: � HYPERLINK "http://graphics.snu.ac.kr/class/na2005/Papers/Simulating%20Ocean%20Water.pdf" �http://graphics.snu.ac.kr/class/na2005/Papers/Simulating%20Ocean%20Water.pdf�

� LANCASTER, L., 2005. RenderMan® Repository

Available from: � HYPERLINK "http://www.renderman.org/RMR/" ��http://www.renderman.org/RMR/�

� MONTREE, T., 2005. Tips for Reflection and refraction maps

Available from: � HYPERLINK "http://www.cgarchitect.com/resources/tutorials/smoke3d/tutorial17.asp" ��http://www.cgarchitect.com/resources/tutorials/smoke3d/tutorial17.asp�

� Available from � HYPERLINK "http://www.deepshade.com" ��www.deepshade.com�

� STEPHENSON, I., 2003. Essential RenderMan Fast.

London: Springer-Verlag.

� HALL, R., 1989. Illumination and Color in Computer Generated Imagery

New York: Springer-Verlag

� STEPHENSON, I., 2005. Production Rendering Design and Implementation.

London: Springer-Verlag.

- 1 -

